EPIC Data Lab Retreat • April 16, 2025 • Berkeley, CA

Parker Ziegler
peziegler@cs.berkeley.edu

Justin Lubin justinlubin@berkeley.edu

Sarah E. Chasins schasins@cs.berkeley.edu

cartolkit

A Direct Manipulation Programming System for Interactive Maps

A Direct Manipulation Programming System for Interactive Maps

Used by journalists at

A Direct Manipulation Programming System for Interactive Maps

Used by journalists at

Monthly Sessions

Users from

20

Countries

"act on displayed objects of interest using physical, incremental, and reversible actions whose effects are immediately visible on the screen"

"act on displayed objects of interest using physical, incremental, and reversible actions whose effects are immediately visible on the screen"

Datawrapper

These systems play an instrumental role in today's newsrooms.

Observational Research (CHI '23)

use. The aim of this work is to identify the unmet computing needs

Direct Collaboration (Grist Data Desk)

A Need-Finding Study with Users of Geospatial Data Parker Ziegler peziegler@cs.berkeley.edu schasins@cs.berkeley.edu University of California, Berkeley University of California, Berkeley Berkeley, California, USA Berkeley, California, USA Figure 1: Example screenshots from participants' work with geospatial data. (A) PJ3 creates a choropleth map of Texas' 2021 proposed electoral districts colored by majority racial demographic in Observable. (B) PJ7 combines satellite imagery, stream data, and deforestation data in QGIS to identify illegal logging in southeast Alaska. (C) PE1 computes a Normalized Difference Water Index of their analysis region in Google Earth Engine using multispectral imagery from the Sentinel-2 satellite. ABSTRACT geospatial data, GIS, geography, cartography, contextual inquiry, Geospatial data is playing an increasingly critical role in the work of Earth and climate scientists, social scientists, and data journalists exploring spatiotemporal change in our environment and societies. **ACM Reference Format:** However, existing software and programming tools for geospatial Parker Ziegler and Sarah E. Chasins. 2023. A Need-Finding Study with analysis and visualization are challenging to learn and difficult to

Users of Geospatial Data. In Proceedings of the 2023 CHI Conference on

Human Factors in Computing Systems (CHI '23), April 23-28, 2023, Hamburg,

- Instantaneous feedback
- Easy to explore variants
 - Smart defaults

These systems play an instrumental role in today's newsrooms.

"before I code anything"

"I have several different versions...it's predominantly thinking through what is the user experience and what kind of information we want the reader to be focused on"

These systems play an instrumental role in today's newsrooms.

Easy to explore variants

Smart defaults

These systems play an instrumental role in today's newsrooms.

Instantaneous feedback

Easy to explore variants

Smart defaults

X Difficult to customize

X Difficult to abstract

X Difficult to escape

These systems play an instrumental role in today's newsrooms.

Highly portable

Programming

Direct Manipulation Interfaces

Instantaneous feedback

Easy to explore variants

Smart defaults

Extremely expressive

W Built for abstraction

Highly portable

Program Output

Program Output

Program Output

```
counties__1: {
wildfires__2: {
 type: "Proportional Symbol",
  data: [
       type: "Point",
       coordinates: [...]
     properties: {
        acreage_burned: 576.43
   fillColor: (d) => "#f2df16",
   strokeWidth: (d) => 0.25,
   radius: (d) => {
     const domain = ...;
     const range = ...;
     const scale = d3.scaleLinear(domain, range);
     return scale(d);
   . . .
```


Sketch-n-Sketch (+livelits, BiOOP)

Figma Dev Mode

Sketch-n-Sketch (+livelits, BiOOP)

cartokit

Rather than re-evaluating the full program on every GUI interaction, update the output directly—ideally, in the smallest way possible.

Key Insight	Key Implication
Rather than re-evaluating the full program on every GUI interaction, update the output directly—ideally, in the smallest way possible.	We can eliminate the need for program evaluation—the most expensive operation—altogether!

For full details, see the proofs in our upcoming PLDI paper!

Fast Direct Manipulation Programming with **Patch-Reconciliation Correspondence**

PARKER ZIEGLER, University of California, Berkeley, USA JUSTIN LUBIN, University of California, Berkeley, USA SARAH E. CHASINS, University of California, Berkeley, USA

Direct manipulation programming gives users a way to write programs without directly writing code, by using the familiar GUI-style interactions they know from direct manipulation interfaces. To date, direct manipulation programming environments have relied on two core components: (1) a patch component, which updates the program based on a GUI interaction, and (2) a forward evaluator, which executes the patched program to produce an updated program output. This architecture has worked for developing short-running programs i.e., programs that reliably execute in <1 second—generating outputs such as SVG and HTML documents. However, direct manipulation programming has not yet been applied to long-running programs (e.g., data visualization, mapping), perhaps because executing such programs in response to every GUI interaction would mean crossing outside of interactive speeds. We propose extending direct manipulation programming to long-running programs by pairing a standard patch component (patch) with a corresponding reconciliation component (recon). recon directly updates the program output in response to a GUI interaction, obviating the need for forward evaluation.

We introduce corresponding patch and recon procedures for the domain of geospatial data visualization and prove them sound—that is, we show that the output produced by recon is identical to the output produced by forward-evaluating a patch-modified program. recon can operate both incrementally and in parallel with patch. Our implementation of our patch-recon instantiation achieves a 2.92× median reduction in interface latency compared to forward evaluation on a suite of real-world geospatial visualization tasks. Looking forward, our results suggest implementations based on patch-recon correspondence are a viable path for extending direct manipulation programming to additional programming domains.

CCS Concepts: • Human-centered computing → User interface programming; • Software and its engineering \rightarrow Graphical user interface languages; Integrated and visual development environments.

Additional Key Words and Phrases: direct manipulation, direct manipulation programming, reconciliation, patch-reconciliation correspondence, cartokit, geospatial data

B

cartoltit

Benchmark Maps

Maps of the April 2024 Total Solar Eclipse

A boat went dark. Finding it could save the world's fish.

You're not crazy.

Spring is getting earlier. Find out how it's changed in your town.

Bird populations are declining. Some are in your neighborhood.

Winter is warming almost everywhere. See how it's changed in your town.

Will global warming make temperature less deadly?

Results

2.92x

median reduction in UI latency

Results

Fig 9. Comparing forward evaluation TTQ against speedup from reconciliation.

Longer-running programs see larger speedups!

0.732

correlation between eval time and speedup

cartokit

Get in touch!

peziegler@cs.berkeley.edu

parkie-doo.sh

Try it out!

alpha.cartokit.dev

github.com/parkerziegler/cartokit