Retrieval Systems for Structured Data

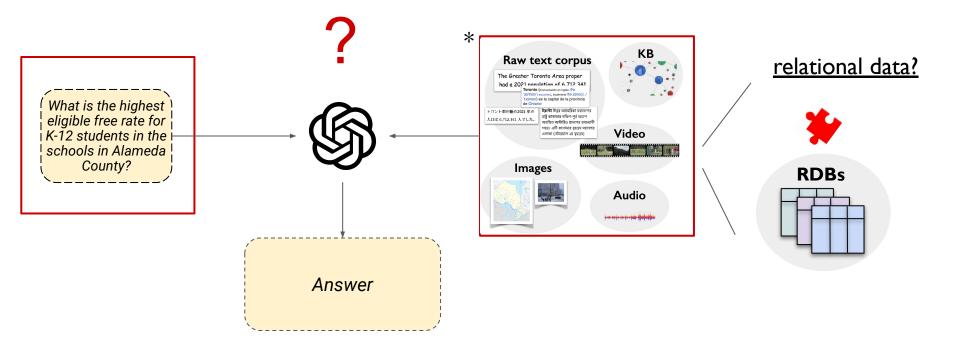
The critical missing 🍎 for coupling LLM-powered query interfaces with factual data

Madelon Hulsebos

Asking LLMs complex questions

What is the highest eligible free rate for K-12 students in the schools in Alameda County? ".... To determine the highest free rate specifically in Alameda County schools, **you'd generally need data from specific school districts or schools in the area**, as this rate can vary widely depending on the socio-economic demographics of each district. ..." *

We need "specific" data to ground LLMs



Why we need RAG over structured data

A pattern in practice: "everyone cares about structured data".

Structured data serve high-value insights! Up-to-date, domain-specific, facts...

Retrieval of structured data + LLM-powered query interfaces:

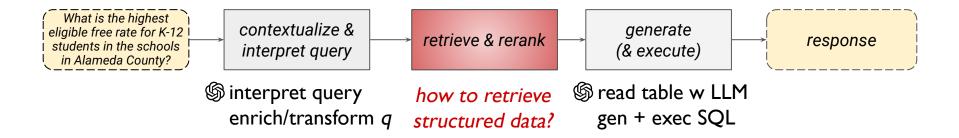
- Solutions Grounding dialogs with LLMs in structured data.
- NL interfaces for analytical queries (e.g. text-to-SQL) assume table(s) given.
- ? Interpretation of query and domain data benefit from LLMs generic knowledge.

Queries & RAG pipeline

"Which urban Japanese prefecture is not associated with thorny trees?" [table lookup]

"Shane Hall ran a total of 190 races between the year of 1995 - 2008" [aggregate & compare]

"What is the highest eligible free rate for K-12 students in the schools in Alameda County" [aggregate]

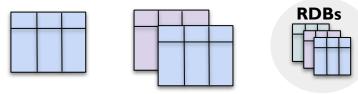


Retrieval is difficult, but crucial...

".. keep in mind that a good RAG system is really **hard to build**. If your **retrieval system is mediocre**, the **retrieval can easily distract LLMs** to backfire... There is still a long way to go." - Wenhu Chen (Univ of Waterloo)

Important grounds to explore...

Retrieval/generation complexity depends on query



- What "task" does the query intend to do?
- How should we **process** the table(s), relational DBs?
- What should we embed of the table(s) and metadata, and how?
- Given query and embedded corpus, how to retrieve relevant table?
- Which data source to retrieve from, and when?
- (How) should methods, models, systems generalize across tasks, datasets?

Methods for table retrieval

(1) Embedding of tables in corpus, and input query

- BM25 / TF-IDF (sparse lexical representations)
- Generate summary/metadata \rightarrow embed summary + table
- "Naive" embedding of table (header / header+rows) and query

(2) Similarity search (e.g. cosine similarity) to identify top-k relevant tables

But how effective are these? How robust across datasets and tasks? No one really knows!

TARGET: Benchmarking <u>Table Retrieval</u> for <u>Generative Tasks</u>

question answering	fact verification	Text-to-SQL				
How's Huang Yu-ting doing in the 2009 World Games?	Shane Hall run a total of 190 race between the year of 1995 - 2008	What is the name of the city furthest to Boston?				

E F I C Ji, X, Parameswaran, A., Hulsebos, M., "TARGET: benchmarking Table Retrieval for Generative Tasks", under review, 2024.

Tasks & Data

Task	Initial Datasets	Evaluation Metrics
Question answering	OTTQA [3], FeTaQA [20]	sacrebleu (SB)
Fact verification	TabFact [4]	precision (P), recall (R), f1-score (F1)
Text-to-SQL	Spider [26], BIRD [15]	execution accuracy (EX)
Table retrieval	all above datasets	recall (R@k), avg. retrieval time (s)

TARGET insights

	Question Answering						Fact Verification			Text-to-SQL						
	OTTQA		FeTaQA		TabFact		Spider			BIRD						
Method	R@10	S	SB	R@10	s	SB	R@10	S	P/R/F1	R@1	S	EX	R@ 1	S	EX	
No context		-	0414	-	-	12,495		-	0.578/0.42/0.44		-	0	-	-	0	
OTT-QA BM25	0.955	0.001	0.606	0.082	0.001	1.631	0.338	0.001	0.75/0.26/0.39	0.635	0.001	0.385	0.709	0.001	0.181	
w/o table title	0.443	0.001	0.529	0.084	0.001	1.555	0.331	0.001	0.75/0.26/0.38	0.5	0.001	0.376	0.535	0.001	0.164	
OTT-QA TF-IDF	0.950	0.001	0.425	0.083	0.001	1.639	0.336	0.001	0.75/0.26/0.38	0.622	0.001	0.474	0.640	0.001	0.227	
w/o table title	0.43	0.001	0.593	0.083	0.001	1.527	0.322	0.001	0.75/0.25/0.37	0.492	0.001	0.376	0.491	0.001	0.164	
LlamaIndex	0.458	0.354	0.507	0.435	0.396	13.745	0.827	0.297	0.73/0.34/0.47	0.735	0.198	0.559	0.937	0.228	0.311	
OpenAI embedding	0.950	0.190	0.599	0.722	0.200	17.64	0.779	0.189	0.76/0.51/0.61	0.768	0.193	0.602	0.926	0.199	0.317	
header only	<u>0.950</u>	0.189	0.61	<u>0.718</u>	0.18	17.66	<u>0.781</u>	0.187	0.75/0.48/0.58	0.833	0.175	0.646	0.958	0.191	0.323	

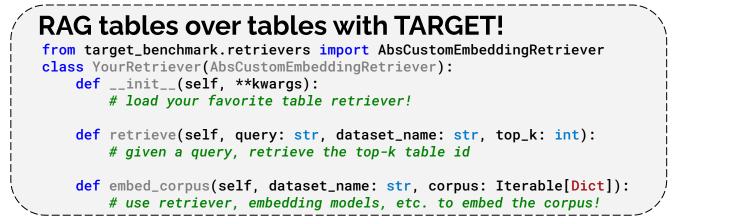
- BM25/TF-IDF less effective, only with very descriptive table name.
- Table rows can "distract" embeddings, particularly in RDBs as seen in practice.
- Generating summary/metadata can help, but not all tables easy to LLM-summarize.

Still much to explore...

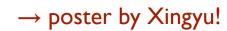
- What is right input of (meta)data to not "distract" embedding?
- How do we route to proper data source, interpret the task, etc?
- The reality in practice is much harder:
 - How do methods perform on more *challenging tasks & datasets*?
 - Closing semantic gap e(query) and e(table); most public datasets relatively "easy" match between query and tables.
 - Relational databases are large \rightarrow in-DB schema and table retrieval.

Roadmap for TARGET

TARGET is out **TODAY**!



- Ready to eval table retrieval and e2e generation: input welcome for v2
- Data on HF, code on GH, *P*pip install target_benchmark
- https://target-benchmark.github.io



Ji, X, Parameswaran, A., Hulsebos, M., "TARGET: benchmarking Table Retrieval for Generative Tasks", under review, 2024.

When and How to Hypothesize Schemas for Retrieval?

We're experimenting with Hypothetical Schema Embeddings (HySE):

- Query \rightarrow hypothesize schema \rightarrow embed hypo schema \rightarrow retrieve similar schemas
- Lightweight (no model dependency), also multi-table retrieval, for any retrieval task
- Finding: HySE most effective when gap (e_{query}, e_{table}) is substantial

Evaluating HySE in TARGET: table QA, fact verification, and text-to-SQL

Also in dataset search engine, soon release a (new) dataset for evaluating data search!

Includes: I) Kaggle CSV data, 2) task queries (e.g. ML use-case), and 3) metadata queries

Iterative and LLM-Assisted Dataset Search Interface

Things we want from Dataset Search interfaces:

LLM Elicitation through Proactive Guidance

<u>Purpose:</u> Prompt users to share more information about their needs, which will be reflected in the query blocks & search interface.

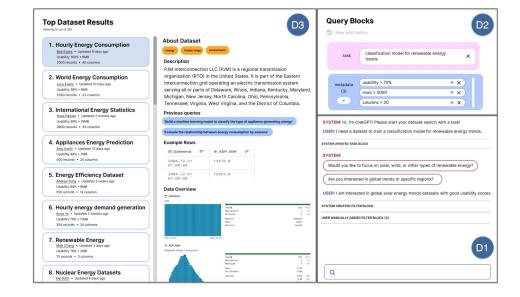
D2 Dynamic Query Decomposition

<u>Purpose:</u> Allow users to see how the LLM is dynamically updating and refining the search space, providing transparency into the search process.

3 Allowing Users to Compare Datasets Efficiently

<u>Purpose:</u> Facilitate high-level exploration of datasets by organizing them into topics and enable users to delve into metadata details of individual datasets as they iteratively build and refine their queries.

\rightarrow poster by Rachel!



Key takeaways

- Retrieval (RAG, agents, or dataset discovery) is a critical component.
- Retrieval/RAG widely explored for text, audio, images; it's time for structured data!
 - Grounding LLMs in structured data
 - Retrieving data for NL analytical queries or more complex tasks such as ML
 - Combine domain-specific up-to-date data with generic knowledge for query/data interpretation
- We introduce **TARGET**: the first benchmark for RAG over structured data
 - BM25 & TF-IDF not as effective, it matters what to put in embedding, naive OAI emed still best.
 - More to study \rightarrow checkout TARGET to push table retrieval forward!
- Stay tuned for methods and interfaces to make table retrieval easy + effective 🔶
- Find Xingyu (TARGET) and Rachel (dataset search interface) at Poster Session!