
Parametric API Summarization :
Template Distillation from LLMs

Naman Jain, Aditya Parameswaran, Koushik Sen, Ion Stoica

1

Data Science APIs are complex!

• Data science use cases growing rapidly

• Yet, APIs like Pandas, SkLearn are challenging for novice users

• For example, Pandas provides over 700 API methods

2

Data Science APIs are complex!

• Each API method provide multiple arguments,
each allowing multiple argument types

• The space of possible argument combinations
is therefore exponential

3

Program Summarization For Explainability

Language models can generate useful and fluent summaries from programs!

4

Issues with language model-based summaries

Language models are generative models of sequences that at best only have
shallow understanding of program semantics.

1) They can make mistakes
2) They are challenging to control

5

Issue 1.a - Robustness

Language models are generative models of sequences that at best only have
shallow understanding of program semantics.

1) They make mistakes
• not robust to small perturbations in programs

6

Issue 1.b – Compositional Generalization

Language models are generative models of sequences that at best only have
shallow understanding of program semantics.

1) They make mistakes
• do not generalize compositionally

7

Issue 2 - Controllability

Language models are generative models of sequences that at best only have
shallow understanding of program semantics.

2) They are challenging to control
a) These systems generate summary in a one-shot fashion
b) give very little end-user control on how the output should look

8

Our Approach - Fusing API knowledge with LLMs

• LLMs are stochastic and noisy!
• `use symbolic knowledge to improve capabilities and provide guardrails

• Previous work (Jigsaw)
• combined synthesis and repair techniques to improve Pandas code generation

• API programs contains methods with well defined structure and semantics

9

API Summarization – An Alternative View

• API programs comprise of specific methods with
• well-defined structure

• argument combinations
• return types

Given this structure and semantics in API programs, can we discover an
intermediate templatized natural language describing the programs

10

Outline

11

Define Parametric
Templates

Learning templates by
combining LMs with API

knowledge

Data Driven
Template

Verification

Parametric Templates - Example

df[df['score'].isin(range(5,10))]

12

Select the rows where value in column score lie in the integers between 5 and 10 (exclusive)

Parametric Templates - Example

df[df['score'].isin(range(5,10))]

• Template[subscript, [caller - df, arg - expr]]
• Select the rows VAR1
• VAR1 = Summary(df['score'].isin(range(5,10)))

• Template[isin, [caller - df['score'], value - range(5,10)]]
• where values in column score lie in VAR1, where
• VAR1 = Summary(range(5,10))

• Template[range, [start - int, end - int]]
• the integers between start and end(exclusive)

16

Select the rows where value in column score lie in the integers between 5 and 10 (exclusive)

Parametric Templates

For any API function with signature 𝑡!, 𝑡"… , 𝑡#

Parametric template 𝑇 is a sequence 𝑥!, 𝑥", … , 𝑥$, where
• 𝑥% = 𝑤% (word) or
• 𝑥% = 𝐹% (a function from arguments to words)

17

Parametric Templates - Example

Consider the program
df.replace({'a':1, 'b':2}, {'a':3, 'b':4})

Replace the values 1 in a and 2 in b with 3 and 4 respectively

The template is

Replace the values 𝐹! with 𝐹" respectively
𝐹! = "and ".join([value + " in " + key for key, value in arg1.items()])

𝐹" = "and ".join([arg2.values()])

18

How to come up with such templates

Writing these templates manually is hard

Here we observe that it is hard to write them but easy to verify and modify

19

requires domain
expertise

templates are fuzzy and
hard to manually annotate

numerous
functions and
arguments!

Learning templates

• We automatically learn parametric templates from a corpus of API snippets and
their summaries (written manually or from language models)

• We learn these templates by
• using dynamic programming on constituency parse trees of summaries
• bottom-up program-synthesis of hole functions
• word and phrase similarities

20

Learned Templates

df.replace({'country': {'Germany':'GER', 'France':'FRA'}})

Replace the values 𝐹! in column 𝐹" with 𝐹& respectively
𝐹! P = 'Germany' and 'France'
𝐹" P = 'country'
𝐹& P = 'GER' and 'FRA'

21

Learned Templates

df.replace({'a':1, 'b':2, 'c':3}, {'a':100, 'b':200, 'c':300}

Replace the values 𝐹! with 𝐹& respectively
𝐹! P = 1 in 'a', 2 in 'b', 3 in 'c'
𝐹" P = 100, 200, 300

22

Learned Templates

df.dropna(subset=['score1', 'score2', 'score3'], thresh=2)

Drop the rows in df having atleast 𝐹! nans in the 𝐹" columns
𝐹! P = 2
𝐹" P = 'score1', 'score2’, and 'score3'

23

Data Driven Verification

• How to evaluate quality of templates?

• Utilizing LMs to evaluate the quality of summaries generated from the templates
• measure perplexity of generated summaries
• recovering the API method back from summaries (bi-directional consistency!)

24

