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Data Science APIs are complex!

• Data science use cases growing rapidly

• Yet, APIs like Pandas, SkLearn are challenging for novice users

• For example, Pandas provides over 700 API methods
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Data Science APIs are complex!

• Each API method provide multiple arguments, 
each allowing multiple argument types

• The space of possible argument combinations 
is therefore exponential
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Program Summarization For Explainability

Language models can generate useful and fluent summaries from programs!
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Issues with language model-based summaries

Language models are generative models of sequences that at best only have 
shallow understanding of program semantics. 

1) They can make mistakes
2) They are challenging to control
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Issue 1.a - Robustness

Language models are generative models of sequences that at best only have 
shallow understanding of program semantics. 

1) They make mistakes
• not robust to small perturbations in programs
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Issue 1.b – Compositional Generalization

Language models are generative models of sequences that at best only have 
shallow understanding of program semantics. 

1) They make mistakes
• do not generalize compositionally
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Issue 2 - Controllability

Language models are generative models of sequences that at best only have 
shallow understanding of program semantics. 

2) They are challenging to control 
a) These systems generate summary in a one-shot fashion 
b) give very little end-user control on how the output should look 
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Our Approach - Fusing API knowledge with LLMs

• LLMs are stochastic and noisy!
• `use symbolic knowledge to improve capabilities and provide guardrails

• Previous work (Jigsaw)
• combined synthesis and repair techniques to improve Pandas code generation

• API programs contains methods with well defined structure and semantics
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API Summarization – An Alternative View

• API programs comprise of specific methods with
• well-defined structure

• argument combinations
• return types

Given this structure and semantics in API programs, can we discover an 
intermediate templatized natural language describing the programs
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Outline 
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Parametric Templates - Example

df[df['score'].isin(range(5,10))]
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Select the rows where value in column score lie in the integers between 5 and 10 (exclusive)



Parametric Templates - Example

df[df['score'].isin(range(5,10))]

• Template[subscript, [caller - df, arg - expr]]
• Select the rows VAR1
• VAR1 = Summary(df['score'].isin(range(5,10)))

• Template[isin, [caller - df['score'], value - range(5,10)]]
• where values in column score lie in VAR1, where
• VAR1 = Summary(range(5,10))

• Template[range, [start - int, end - int]]
• the integers between start and end(exclusive)
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Parametric Templates

For any API function with signature 𝑡!, 𝑡"… , 𝑡#

Parametric template 𝑇 is a sequence 𝑥!, 𝑥", … , 𝑥$ , where 
• 𝑥% = 𝑤% (word) or 
• 𝑥% = 𝐹% (a function from arguments to words)
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Parametric Templates - Example 

Consider the program
df.replace({'a':1, 'b':2}, {'a':3, 'b':4})

Replace the values 1 in a and 2 in b with 3 and 4 respectively

The template is

Replace the values 𝐹! with 𝐹" respectively
𝐹! = "and ".join([value + " in " + key for key, value in arg1.items()])

𝐹" = "and ".join([arg2.values()])
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How to come up with such templates

Writing these templates manually is hard

Here we observe that it is hard to write them but easy to verify and modify
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Learning templates 

• We automatically learn parametric templates from a corpus of API snippets and 
their summaries (written manually or from language models)

• We learn these templates by 
• using dynamic programming on constituency parse trees of summaries
• bottom-up program-synthesis of hole functions
• word and phrase similarities
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Learned Templates

df.replace({'country': {'Germany':'GER', 'France':'FRA'}})

Replace the values 𝐹! in column 𝐹" with 𝐹& respectively
𝐹! P = 'Germany' and 'France'
𝐹" P = 'country'    
𝐹& P = 'GER' and 'FRA'
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Learned Templates

df.replace({'a':1, 'b':2, 'c':3}, {'a':100, 'b':200, 'c':300}

Replace the values 𝐹! with 𝐹& respectively
𝐹! P = 1 in 'a', 2 in 'b', 3 in 'c'
𝐹" P = 100, 200, 300
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Learned Templates

df.dropna(subset=['score1', 'score2', 'score3'], thresh=2)

Drop the rows in df having atleast 𝐹! nans in the 𝐹" columns
𝐹! P = 2
𝐹" P = 'score1', 'score2’, and 'score3'
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Data Driven Verification

• How to evaluate quality of templates?

• Utilizing LMs to evaluate the quality of summaries generated from the templates
• measure perplexity of generated summaries
• recovering the API method back from summaries (bi-directional consistency!)
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