USA

BIL

E PROGRAMMING TOOLS

~OR EXPERIMENTAL BIOLOGISTS

Justin Lubin

Advisor: Sarah E. Chasins
EPIC Retreat, Spring 2022

Precision Genomic
health editing

Vaccines

Wet lab

4 R
HANDS-ON
PROTOCOLS

-
Wet lab ?‘:; ﬁ £

USA

BIL

E PROGRAMMING TOOLS

~OR EXPERIMENTAL BIOLOGISTS

COMPONE
REFACTOR

N 1=

BASED

ING

WET LAB
LANGUAGE

COMPONENT-BASED

REFACTORING

WET LA

LANG

UAG

HRIRCE)

COMPONENT-BASED
REFACTORING

1. Motivating example
2. Naive approach

3. Ourapproach

COMPONENT-BASED
REFACTORING

1. Motivating example

2. Naive approach

3. Ourapproach

ACGCGTGCAGCGACGTAGATCAG

11 I |
ACGCGTGCAGCGACGTAGATCAG

11 I |
ACGCGTGCAGCGACGTAGATCAG

2

11 I |
ACGCGTGCAGCGACGTAGATCAG

2 2

11 N |
ACGCGTGCAGCGACGTAGATCAG

2 21

11 1 1
ACGCGTGCAGCGACGTAGATCAG

2 211

11 I |
ACGCGTGCAGCGACGTAGATCAG

22110

11 I |
ACGCGTGCAGCGACGTAGATCAG

22110

11 I |
ACGCGTGCAGCGACGTAGATCAG

2211000111211100000

Straightforward solution:

Two nested for loops -

...but takes >1 day to run...

Faster solution:

np.concatenate([
np.convolve(
(seq == "C")[:-1] & (seq == "G")[1:1],
np.ones(window_size),
"valid"),
[011)

Straightforward solution: ~ -
~ N
Two nested for loops \

...but takes >1 day to run...

Faster solution:

np.concatenate([

np.convolve(® O
(seq == "C")[:-1] & (seq == "G")[1:1,
np.ones(window_size), / \ y
"valid"), g

— |
[0]1) ...but takes <15 min to run!

COMPONENT-BASED
REFACTORING

1. Motivating example

2. Naive approach

3. Ourapproach

COMPONENT-BASED
REFACTORING

1. Motivating example

2. Naive approach
3. Ourapproach

/

_

def dot(x, y):

total = 0@
for i in range(len(x)):
total += x[1] * y[i]

return total

Inline

total = 0

for i in range(len(mul(x, y))):
total += mul(x, y)[i]

return total

/

_

def dot(x, y):

total = 0

for i in range(len(x)):
total += x[1] * y[i]

return total

“\\\\\/__—//
@
&

Inline

total = 0

for i in range(len(mul(x, y))):
total += mul(x, y)[i]

return total

/

_

def dot(x, y):

total = 0

for i in range(len(x)):
total += x[1] * y[i]

return total

“\\\\\/__—//
@
&

Inline

total = 0

for i in range(len(mul(x, y))):
total += mul(x, y)[i]

return total

f

_

def dot(x, y):

total = 0

for i in range(len(x)):
total += x[1] * y[i]

return total

“\\\\\/__—//
@
&

COMPONENT-BASED
REFACTORING

1. Motivating example

2. Naive approach
3. Ourapproach

COMPONENT-BASED
REFACTORING

1. Motivating example
2. Naive approach

3. Our approach

Inline

total = 0

for i in range(len(mul(x, y))):
total += mul(x, y)[i]

return total

f

_

def dot(x, y):

total = 0

for i in range(len(x)):
total += x[1] * y[i]

return total

“\\\\\/__—//
@
&

CANONICALIZATION

len(mul(x, y)) B2
—

Canonicalize

total = 0

for i in range(len(x)):
total += x[1] * y[1]

return total

f

_

def dot(x, y):

total = 0
for i in range(len(x)):
total += x[1] * y[i]

return total

Canonicalize

Canonicalize

-

def dot(x, y):
total = 0
for i in range(len(x)):

total += x[i] * y[i]
return total

sum(mul(x, y))

Canonicalize

preserves behavior

O \
/ i
def dot(x, y): Oi] .
total = 0 "O
for i in range(len(x)): M - ‘
total += x[i] * y[i]

return total

sum(mul(x, y))

Canonicalize

preserves behavior

O \
/ i
def dot(x, y): Oi] .
total = 0 "O
for i in range(len(x)): M - ‘
total += x[i] * y[i]

return total

sum(mul(x, y))

Canonicalize

preserves behavior

O \
/ i
def dot(x, y): Oi] ‘
total = 0 "O
for i in range(len(x)): M - ‘
total += x[i] * y[i]

return total

sum(mul(x, y))

Canonicalize

preserves behavior

O \
/ i
def dot(x, y): Oi] ‘
total = 0 "O
for i in range(len(x)): M - ‘
total += x[i] * y[i]

return total

sum(mul(x, y))

Canonicalize

-

def dot(x, y):
total = 0
for i in range(len(x)):
total += x[i] * y[i]
return total

sum(mul(x, y))

preserves behavior

KlE

For many programs,

KlE

For many programs,

we can check
extensional equality

KlE

For many programs,

we can check
extensional equality

— by —

syntactic equality
modulo
canonicalization

11 N |
ACGCGTGCAGCGACGTAGATCAG

2211000111211100000

Straightforward solution: Faster solution:

np.concatenate([
Two nested for loops "o, convolve
(seq == "C")[:-1] & (seq == "G")[1:1],
np.ones(window_size),
"valid"),

(011

...takes >1 day to run... ...takes <18 min to run!

‘I

Jeremy Ferguson Kevin Ye Jacob Yim

11 1 1

ACGCGTGCAGCGACGTAGATCAG
2211000111211100000

s A ;
def dot(x, v): preserves behavior
total = 0
for i in range(len(x)):
total += x[i] * y[i]

return total
Canonicalize \ \G/
total = 0

for i in range(len(x)): .
total += x[i] * y[i]
return total

