
Justin Lubin

Advisor: Sarah E. Chasins
EPIC Retreat, Spring 2022



🧬🎯💉
ೈ ऊ...

Vaccines
Precision 

health
Genomic 
editing

Wet lab Dry lab



ೈ ऊ...Wet lab Dry lab



ೈ ऊ...

൤ ߾ू
ࣘ

ഽࢣ
ऍ

ް
ߗ

...

...

...

......







🧬🎯💉
Vaccines Precision health Genomic editing







1. Motivating example

2. Naïve approach

3. Our approach



1. Motivating example

2. Naïve approach

3. Our approach







2



2 2



2 2 1



2 2 1 1



2 2 1 1 0



2 2 1 1 0 ...



2 2 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 0 0



Faster solution:
  np.concatenate([
    np.convolve(
      (seq == "C")[:-1] & (seq == "G")[1:],
      np.ones(window_size),
      "valid"),
    [0]])

Straightforward solution:

  Two nested for loops ☺
…but takes >1 day to run…
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