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Straightforward solution:

Two nested for loops -

...but takes >1 day to run...

Faster solution:

np.concatenate([
np.convolve(
(seq == "C")[:-1] & (seq == "G")[1:1],
np.ones(window_size),
"valid"),
[011)
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for i in range(len(x)):
total += x[1] * y[i]

return total
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Straightforward solution: Faster solution:

np.concatenate([
Two nested for loops "o, convolve
(seq == "C")[:-1] & (seq == "G")[1:1],
np.ones(window_size),
"valid"),

(011

...takes >1 day to run... ...takes <18 min to run!
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def dot(x, v): preserves behavior
total = 0
for i in range(len(x)):
total += x[i] * y[i]

return total
Canonicalize \ \G/
total = 0

for i in range(len(x)): .
total += x[i] * y[i]
return total




