
Justin Lubin

Advisor: Sarah E. Chasins
EPIC Retreat, Spring 2022

🧬🎯💉
ೈ ऊ...

Vaccines
Precision

health
Genomic
editing

Wet lab Dry lab

ೈ ऊ...Wet lab Dry lab

ೈ ऊ...

൤ ߾ू
ࣘ

ഽࢣ
ऍ

ް
ߗ

...

...

...

......

🧬🎯💉
Vaccines Precision health Genomic editing

1. Motivating example

2. Naïve approach

3. Our approach

1. Motivating example

2. Naïve approach

3. Our approach

2

2 2

2 2 1

2 2 1 1

2 2 1 1 0

2 2 1 1 0 ...

2 2 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 0 0

Faster solution:
 np.concatenate([
 np.convolve(
 (seq == "C")[:-1] & (seq == "G")[1:],
 np.ones(window_size),
 "valid"),
 [0]])

Straightforward solution:

 Two nested for loops ☺
…but takes >1 day to run…

☹
Faster solution:
 np.concatenate([
 np.convolve(
 (seq == "C")[:-1] & (seq == "G")[1:],
 np.ones(window_size),
 "valid"),
 [0]])

Straightforward solution:

 Two nested for loops ☺
…but takes >1 day to run…

…but takes <15 min to run!

1. Motivating example

2. Naïve approach

3. Our approach

1. Motivating example

2. Naïve approach

3. Our approach

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

total = 0
for i in range(len(mul(x, y))):
 total += mul(x, y)[i]
return total

Inline

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

total = 0
for i in range(len(mul(x, y))):
 total += mul(x, y)[i]
return total

Inline

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

total = 0
for i in range(len(mul(x, y))):
 total += mul(x, y)[i]
return total

Inline

1. Motivating example

2. Naïve approach

3. Our approach

1. Motivating example

2. Naïve approach

3. Our approach

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

total = 0
for i in range(len(mul(x, y))):
 total += mul(x, y)[i]
return total

Inline

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

total = 0
for i in range(len(mul(x, y))):
 total += mul(x, y)[i]
return total

len(mul(x, y))

mul(x, y)[i]

len(x)

x[i] * y[i]

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

Canonicalize

total = 0
for i in range(len(x)):
 total += x[i] * y[i]
return total

Canonicalize

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

Canonicalize

preserves behavior

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

Canonicalize

preserves behavior

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

Canonicalize

preserves behavior

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

Canonicalize

preserves behavior

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

Canonicalize

Canonicalize

preserves behavior

sum(mul(x, y))

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

For many programs,

we can check
semantic equality

— by —

syntactic equality
modulo

canonicalization

For many programs,

we can check
extensional equality

— by —

syntactic equality
modulo

canonicalization

For many programs,

we can check
extensional equality

— by —

syntactic equality
modulo

canonicalization

2 2 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 0

Faster solution:

 np.concatenate([
 np.convolve(
 (seq == "C")[:-1] & (seq == "G")[1:],
 np.ones(window_size),
 "valid"),
 [0]])

Straightforward solution:

 Two nested for loops

0

…takes >1 day to run… …takes <15 min to run!

Jeremy Ferguson Kevin Ye Jacob Yim

2 2 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 0 0

def dot(x, y):
 total = 0
 for i in range(len(x)):
 total += x[i] * y[i]
 return total

sum(mul(x, y))

Canonicalize

total = 0
for i in range(len(x)):
 total += x[i] * y[i]
return total

preserves behavior

