Hellina Hailu Nigatu

Background

Domain experts like journalists and public defenders have
to do a lot of manual data cleaning and processing when
working with large document dumps. We collaborated with
domain experts and built a document organization tool. We
tested three programming paradigms to identify what

works for our set of users.

Document Dumps x L A
A PN
PDF 1
Case 34 . 5 img-67
Sapdr i
A A oy
F PDF |
St pir Tom_wins e
2
all_testimo ;vi;ien
’ nies ce.pdf
Public Defender

Court

Methods

Data Needs

Data Cleaning
1. Duplicates.
2. Quality of pages.

Data Extraction
1. Page Type
2. Agency Format

Data Organization

1. One case; several
files.

2. Multiple cases might
be found in a single
PDF.

Programming Paradigm
Study Results

e Text-based gives users low level control and
exploration outside of designer provided
abstraction.

e Visual gives designers the opportunity to
provide information that users could not
uncover on their own.

e PBE puts the focus on the data rather than the
program structure.

designed by ‘& freepik

el -

g ///\\ =,

*** Work to appear in FAccT23™"

Through collaborative design, we
can make accessible programming
tools for under-resourced domain
experts.

=

i

i

- _/

Design Goal

Constraints

Design Implications

Human Control and Inter-
vention

e Risks of mistakes in document classification

are too high for this domain.

We found corrective actions to be more time
and energy consuming than active, incre-
mental decisions.

Design should prioritize support-
ing users exclusively in organizing
the data rather than automating the
whole process.

Non-Interference with Exist-
ing Practices

Cross-team differences in data management
and handling practices.

Conflicting needs: Privacy and security con-
cerns with using online platforms for one
team conflicting with lack of local storage
space for large data size in another team.
Pre-existing workflows for post-data organi-
zation tasks and file sharing.

Design should account for and be
adoptable to pre-existing workflows
and practices.

Robustness to Data Variants

Different teams with similar but not identical
data.

Changes in data structure due to differences
between LEAs themselves.

Potential solution would need to be
resilient to changing formats and
representations and inter-operable
with similar but not identical
datasets from others.

High-level Abstractions

Plain programming languages like Python or
R require too much detailed technical knowl-
edge to execute the required tasks.

Pre-built software solutions give limited flex-
ibility to our users.

Tools should prioritize meeting
users where they are with technical
skills; requiring minimum training
while allowing flexibility.

Cost-Sensitive Solutions

Resource-constrained teams lack the mon-
etary resource to employ commercial soft-
ware for their tasks.

Open-source software products do not pro-
duce same level of quality results.

When relying on open source soft-
ware, tools should identify trade-
offs with quality and ensure quality
control with other schemes.

lab

UC Berkeley

i

Lessons Learned: Co-designing

4 N
Cross-Team Transfer
I 4
s B
Long Term
Engagement
- 4

Programming Paradigms

<

i

DOT Python Library

Visual

PBE

a I
Benefits of
Co-Design

L 4

V- I

Beyond
Computational Tools
\ 4
Text-Based

=

Hellina Hailu Nigatu, Lisa Pickoff-White, John Canny, Sarah Chasins

