

Introduction

We are in a new era of AI. People can use big ML models without significant data or ML expertise!

While it's easier than ever to create a prototype or demo, it's difficult to translate this into a production application.

Our goal is to enable citizen software developers to build **production-ready** ML applications with **minimal post**deployment hassle.

Pain Points

Existing frameworks to develop production-grade ML pipelines are full of tricky issues.

Building Next-Generation Machine Learning Applications Shreya Shankar and Aditya G. Parameswaran {shreyashankar,adityagp}@berkeley.edu

Should I prompt engineer or should I finetune?

Current Tools Produce Messy, Ad-Hoc Pipelines

Existing tools are built for developing ML applications with static data assumptions. But production is dynamic!

This leads to redundant computation, high costs, and many MLOps headaches.

Motion: A New Framework

Our Python framework, Motion, allows developers to build ML applications with **continually-updating state**. Motion listens for changes in data and runs ML-specific logic as triggers. Building an application in Motion consists of these steps:

- 1. Define data *relations*, with their corresponding schemas
- 2. Define *triggers* to run when relations are updated. Triggers have setUp (initialize state), infer (state read-only), and fit
- (state write-allowed, runs in background) operations.
- 3. Deploy!

Motion coordinates trigger state and schedules operations.

Improving Experimentation Support 🧪 • Allowing users to easily answer, "Should I prompt engineer or should I fine-tune?"

data drift

preprint arXiv:2303.06094. interview study. arXiv preprint arXiv:2209.09125. Pipelines. arXiv preprint arXiv:2108.13557.

What You Get With Motion

Traditional Workflow	Motion Workflow
 upfront effort s exibility to look at and operate on full atches of data o need to specify data and ependencies o need to think about fine-tuning 	 Higher upfront effort \$\$ Must define schema Must separate logic into state read-only and write-allowed (infer vs fit)
h ops effort eed to rewrite existing pipelines when dding new functionality (e.g., ingesting ew documents, fine-tuning) eed to validate data and monitor for hift eed to coordinate different jobs	 Low ops effort () Can add new functionality without modifying existing pipeline code Data is type-checked, validated, and monitored All jobs done on one machine (unless explicitly outsourced in infer or fit methods)

Work In Progress

Auto-Refit on Data Drift 🔁

• Profiling summaries of data within relations to check for

• Trigger a state update when summaries have changed

Check Out Our Work!

Motion Docs: <u>https://dm4ml.github.io/motion/</u> Motion Github: <u>https://github.com/dm4ml/motion</u>

Shankar, S., & Parameswaran, A. (2021). Towards Observability for Production Machine Learning

Shankar, S., Fawaz, L., Gyllstrom, K., & Parameswaran, A. G. (2023). Moving Fast With Broken Data. arXiv

Shankar, S., Garcia, R., Hellerstein, J. M., & Parameswaran, A. G. (2022). Operationalizing machine learning: An