Building Next-Generation Machine Learning Applications

Shreya Shankar and Aditya G. Parameswaran
{shreyashankar,adityagp}©@berkeley.edu

E L
D ATA

Introduction

We are in a new era of Al. People can use big ML models
without significant data or ML expertise!

While it's easier than ever to create a prototype or demo, it's
difficult to translate this into a production application.

Our goal is to enable citizen software developers to build

production-ready ML applications with minimal post-
deployment hassle.

Pain Points

Existing frameworks to develop production-grade ML
pipelines are full of tricky issues.

How do | easily share
this pipeline with another

team?

Can we easily
incorporate user feedback +

into fine-tuning on the =
fly?

How do | lower insane
API| costs?

Should | prompt
engineer or should | fine-
tune?

How do | identify
hallucinations?

Current Tools Produce
Messy, Ad-Hoc Pipelines

Il B BB BE = .
Collection of ' I Run every 24 1
documents I hours 0
Il B BB BE = .

! !

applications with static

_ Load and split LLM Embed user
data assumptions. But docs into chunks Embeddings API query
production is dynamic! l‘; l

Find nearest
Eml edding Store neighbor

Existing tools are built
for developing ML

Use LLM to create
embeddings for

This leads to redundant

each chunk B R documents
_ _ un every
computation, high + I week !
LLM Completion Create prompt

costs, and many - i

MLOps headaches.
phk

and query LLM

v

I Database
land cachingy
1 layer

v
.--”

to user

Motion: A New Framework

Our Python framework, Motion, allows developers to build ML
applications with continually-updating state. Motion listens

for changes in data and runs ML-specific logic as triggers.
Building an application in Motion consists of these steps:

1. Define data relations, with their corresponding schemas

2. Define triggers to run when relations are updated. Triggers
have setUp (initialize state), infer (state read-only), and fit
(state write-allowed, runs in background) operations.

3. Deploy!

Life Cycle Diagram

The following diagram shows how user-defined methods, the data store, and trigger state
interact during the trigger life cycle:

Motion-Managed Objects

Data store —on change state
User-defined Methods

used for—> infer \
)(updates fit

routes J

Motion coordinates trigger state
and schedules operations.

setUp

What You Get With
Motion

Traditional Workflow

Low upfront effort %

e Flexibility to look at and operate on full
batches of data

® No need to specify data and
dependencies

® No need to think about fine-tuning

Pre-Deployment

Motion Workflow

Higher upfront effort =7

e Must define schema

e Must separate logic into state read-only and
write-allowed (infer vs fit)

High ops effort @

® Need to rewrite existing pipelines when
adding new functionality (e.g., ingesting

OESBLENIGWENI new documents, fine-tuning)

® Need to validate data and monitor for
shift

Low ops effort &

e Can add new functionality without modifying
existing pipeline code

e Data is type-checked, validated, and monitored

e All jobs done on one machine (unless explicitly

Return response

. _ | e ;)
e Need to coordinate different jobs outsourced in infer or fit methods)

Work In Progress

Improving Experimentation Support #
e Allowing users to easily answer, “Should | prompt engineer
or should | fine-tune?”

Auto-Refit on Data Drift (&)
e Profiling summaries of data within relations to check for

data drift
e Trigger a state update when summaries have changed

Check Out Our Work!

Motion Docs: https://dm4ml.github.io/motion/
Motion Github: https://github.com/dm4ml/motion

Shankar, S., Fawaz, L., Gyllstrom, K., & Parameswaran, A. G. (2023). Moving Fast With Broken Data. arXiv
preprint arXiv:2303.06094.

Shankar, S., Garcia, R., Hellerstein, J. M., & Parameswaran, A. G. (2022). Operationalizing machine learning: An
interview study. arXiv preprint arXiv:2209.09125.

Shankar, S., & Parameswaran, A. (2021). Towards Observability for Production Machine Learning

Pipelines. arXiv preprint arXiv:2108.13557.

https://dm4ml.github.io/motion/
https://github.com/dm4ml/motion

