
• At the end of each trial, the correct category was revealed and the subjects 
recorded the accuracy of their category guess. 

Building Next-Generation Machine Learning Applications
Shreya Shankar and Aditya G. Parameswaran

Introduction Current Tools Produce 
Messy, Ad-Hoc Pipelines

Motion: A New Framework

Check Out Our Work!

Pain Points

{shreyashankar,adityagp}@berkeley.edu

Work In Progress

We are in a new era of AI. People can use big ML models 
without significant data or ML expertise!


While it’s easier than ever to create a prototype or demo, it’s 
difficult to translate this into a production application.


Our goal is to enable citizen software developers to build 
production-ready ML applications with minimal post-
deployment hassle.

Existing frameworks to develop production-grade ML 
pipelines are full of tricky issues.

Existing tools are built 
for developing ML 
applications with static 
data assumptions. But 
production is dynamic!


This leads to redundant 
computation, high 
costs, and many 
MLOps headaches.

What You Get With 
Motion

Improving Experimentation Support 🧪

• Allowing users to easily answer, “Should I prompt engineer 

or should I fine-tune?”


Auto-Refit on Data Drift 🔁

• Profiling summaries of data within relations to check for 

data drift

• Trigger a state update when summaries have changedHow do I lower insane 

API costs?

How do I easily share 
this pipeline with another 

team?

Can we easily 
incorporate user feedback 
into fine-tuning on the 

fly?

How do I identify 
hallucinations?

Should I prompt 
engineer or should I fine-

tune?

Run every 24 
hours

Database 
and caching 

layer

Run every 
week

Our Python framework, Motion, allows developers to build ML 
applications with continually-updating state. Motion listens 
for changes in data and runs ML-specific logic as triggers. 
Building an application in Motion consists of these steps:


1. Define data relations, with their corresponding schemas

2. Define triggers to run when relations are updated. Triggers 

have setUp (initialize state), infer (state read-only), and fit 
(state write-allowed, runs in background) operations.


3. Deploy!


Traditional Workflow Motion Workflow

Pre-Deployment

Low upfront effort 🚀

• Flexibility to look at and operate on full 

batches of data

• No need to specify data and 

dependencies

• No need to think about fine-tuning

Higher upfront effort 👷

• Must define schema

• Must separate logic into state read-only and 

write-allowed (infer vs fit)

Post-Deployment

High ops effort 😩

• Need to rewrite existing pipelines when 

adding new functionality (e.g., ingesting 
new documents, fine-tuning)


• Need to validate data and monitor for 
shift


• Need to coordinate different jobs

Low ops effort 🤑

• Can add new functionality without modifying 

existing pipeline code

• Data is type-checked, validated, and monitored

• All jobs done on one machine (unless explicitly 

outsourced in infer or fit methods)

Motion Docs: https://dm4ml.github.io/motion/ 

Motion Github: https://github.com/dm4ml/motion


Shankar, S., Fawaz, L., Gyllstrom, K., & Parameswaran, A. G. (2023). Moving Fast With Broken Data. arXiv 
preprint arXiv:2303.06094.

Shankar, S., Garcia, R., Hellerstein, J. M., & Parameswaran, A. G. (2022). Operationalizing machine learning: An 
interview study. arXiv preprint arXiv:2209.09125.

Shankar, S., & Parameswaran, A. (2021). Towards Observability for Production Machine Learning 
Pipelines. arXiv preprint arXiv:2108.13557. 

Motion coordinates trigger state 
and schedules operations.

https://dm4ml.github.io/motion/
https://github.com/dm4ml/motion

