
5/16/23, 3:22 PM EpicNapa23_Demo

localhost:8888/nbconvert/html/EpicNapa23_Demo.ipynb?download=false 1/6

FLORDB: Retroactive Query Evaluation for
Iterative AI/ML

Rolando Garcia presenting for EPIC Retreat, Napa, 2023

repository: github.com/ucbrise/flor

Modern ML: High Velocity Experimentation
"You will want to see some degree of experimental thoroughness
[...] People will have principled stances or intuitions
for why [model changes] should work, but the most important
thing to do is achieve scary high experimentation velocity."

Kaggle NLP Disasters

A colleague participated in a Kaggle competition to classify true/false emergencies.

In one week, she explored hundreds of alternatives.

Sustaining high velocity over the course of model development
and tuning leads to an explosion in the number of model
versions.

</br> </br> </br> </br>

What are all of the different things she tried? What should she try next?

https://github.com/ucbrise/flor

5/16/23, 3:22 PM EpicNapa23_Demo

localhost:8888/nbconvert/html/EpicNapa23_Demo.ipynb?download=false 2/6

My evaluation; their training runs.

In []: %pip install flordb

In []: import flor

In []: # Download ML Tutorials
!git clone https://github.com/ucbepic/ml_tutorial.git /content/ml_tutorial

5/16/23, 3:22 PM EpicNapa23_Demo

localhost:8888/nbconvert/html/EpicNapa23_Demo.ipynb?download=false 3/6

Let's instrument main.py for Flor Record-
Replay

Flor.checkpoints() : Pass in the objects to checkpoint periodically
Flor.loop() : Wrap iterators for (1) the main epoch loop and (2) the nested training

loop

...
Flor.checkpoints(model, optimizer)

In []: import os
os.chdir('/content/ml_tutorial')

5/16/23, 3:22 PM EpicNapa23_Demo

localhost:8888/nbconvert/html/EpicNapa23_Demo.ipynb?download=false 4/6

for epoch in Flor.loop(range(num_epochs)):
 for i, (images, labels) in Flor.loop(enumerate(train_loader)):
 ...

Next, flor will:

Write logs to Git
Write checkpoints to Shared Drive

And:

Commit changes to Git

We want to create a new branch with a flor.shadow prefix (and switch into that branch)

in which we give Flor permission to commit to Git automatically on every run.

Next, we read the log records written by past runs into a Pivoted Dataframe

And we display the logged confusion matrix

Loading log records from someone else's
experimentation
First, we look at the remote branches available in the ml_tutorial repository.

We switch into a branch we want to explore further.

In []: !code /content/ml_tutorial/main.py

In []: !python main.py --flor EpicDemo

In []: !git checkout -b flor.shadow

In []: from flor import log_records, full_pivot
pvt = full_pivot(log_records())
pvt

In []: from IPython.display import display
from IPython.core.display import Image
from pathlib import PurePath

pvt = full_pivot(log_records())
for projid,runid,tstamp,vid,cf_matrix in pvt[
 list(flor.DATA_PREP) + ['cf_matrix']].drop_duplicates().values:
 if not isinstance(cf_matrix, float):
 p = PurePath(cf_matrix)
 display(Image(p))

In []: !git branch -r

5/16/23, 3:22 PM EpicNapa23_Demo

localhost:8888/nbconvert/html/EpicNapa23_Demo.ipynb?download=false 5/6

And, like before, we read the log records written by past runs into a Pivoted Dataframe, but

this time from the branch flor.shadow.compressed

The Pivoted Dataframe is missing data
My colleague did not log cf_matrix or accuracy
We did not log the hidden_size , lr , batch_size

First, we preview the available confusion matrices:

Wouldn't it be nice if we could send our logging statements back in time, so that we could

better compare our models using the same evaluation logic and metrics?

FlorDB Replay will:

1. Select the versions from the pivoted view that satisfy the where_clause
2. Estimate the time it will take to replay the selected versions

3. Check out the versions one-by-one, patching the code to include additional logging

statements indicated in apply_vars
4. Replay the patched historical version using memoization and parallelism as possible to

retrieve logged data

#

</br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br>

</br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br> </br>

</br> </br> </br> </br> </br> </br> </br> </br> </br> </br>

In []: !git checkout flor.shadow.compressed

In []: from flor import log_records, full_pivot
pvt = full_pivot(log_records())
pvt[list(flor.DATA_PREP)
+ ['cf_matrix', 'hidden_size',
 'lr', 'batch_size', 'accuracy']].drop_duplicates()

In []: from IPython.display import display
from IPython.core.display import Image
from pathlib import PurePath

pvt = full_pivot(log_records())
for projid,runid,tstamp,vid,cf_matrix,accuracy in pvt[
 list(flor.DATA_PREP) + ['cf_matrix', 'accuracy']].drop_duplicates().values:
 if not isinstance(cf_matrix, float):
 p = PurePath(cf_matrix)
 print((runid, str(tstamp), accuracy))
 display(Image(p))

In []: flor.replay(apply_vars=['cf_matrix'], where_clause='cf_matrix.isna() and hidden

5/16/23, 3:22 PM EpicNapa23_Demo

localhost:8888/nbconvert/html/EpicNapa23_Demo.ipynb?download=false 6/6

Thank you! Questions? Comments?
Talk to me about your use-case!

rogarcia@berkeley.edu

repository: github.com/ucbrise/flor

https://github.com/ucbrise/flor

