Parallel Lookup Functions for High-Performance Data Exploration

Connor Lien, Dixin Tang, Aditya Parameswaran

Background

Lookup functions are extremely popular in spreadsheet data analysis

- Incredibly intuitive and common in Excel and Google Sheets
- Can powerfully help users synthesize data

Lookup functions scale extremely poorly

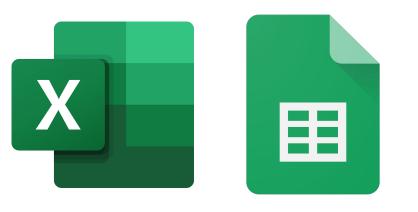
- Excel and Google Sheets take minutes on large inputs, and fail to handle cases with many rows which limits the function's use case
- Currently no APIs that support fast lookups for tabular data

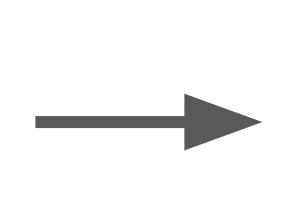
Idea: scale lookup functions using **distributed algorithms** based on database joins and well-known approximate search algorithms

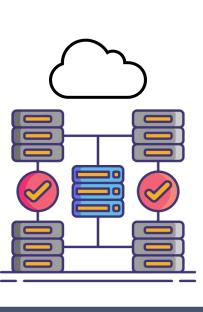
• Discuss the tradeoffs of each in terms of CPU cost, network cost, and implementation simplicity

Unique Challenges

- Must preserve order track with an index column
- Combining subresults of approximate (fuzzy) matching
- Extra communication cost due to shuffling large tables







Implementation + Evaluation

Case Study: Dataframes • Lookup functions using **pandas DataFrames** • Why pandas? It's convenient, fast, and has a built-in index to track order (though sorting index can be slow) • Parallel execution achieved using **Dask High-Level API**

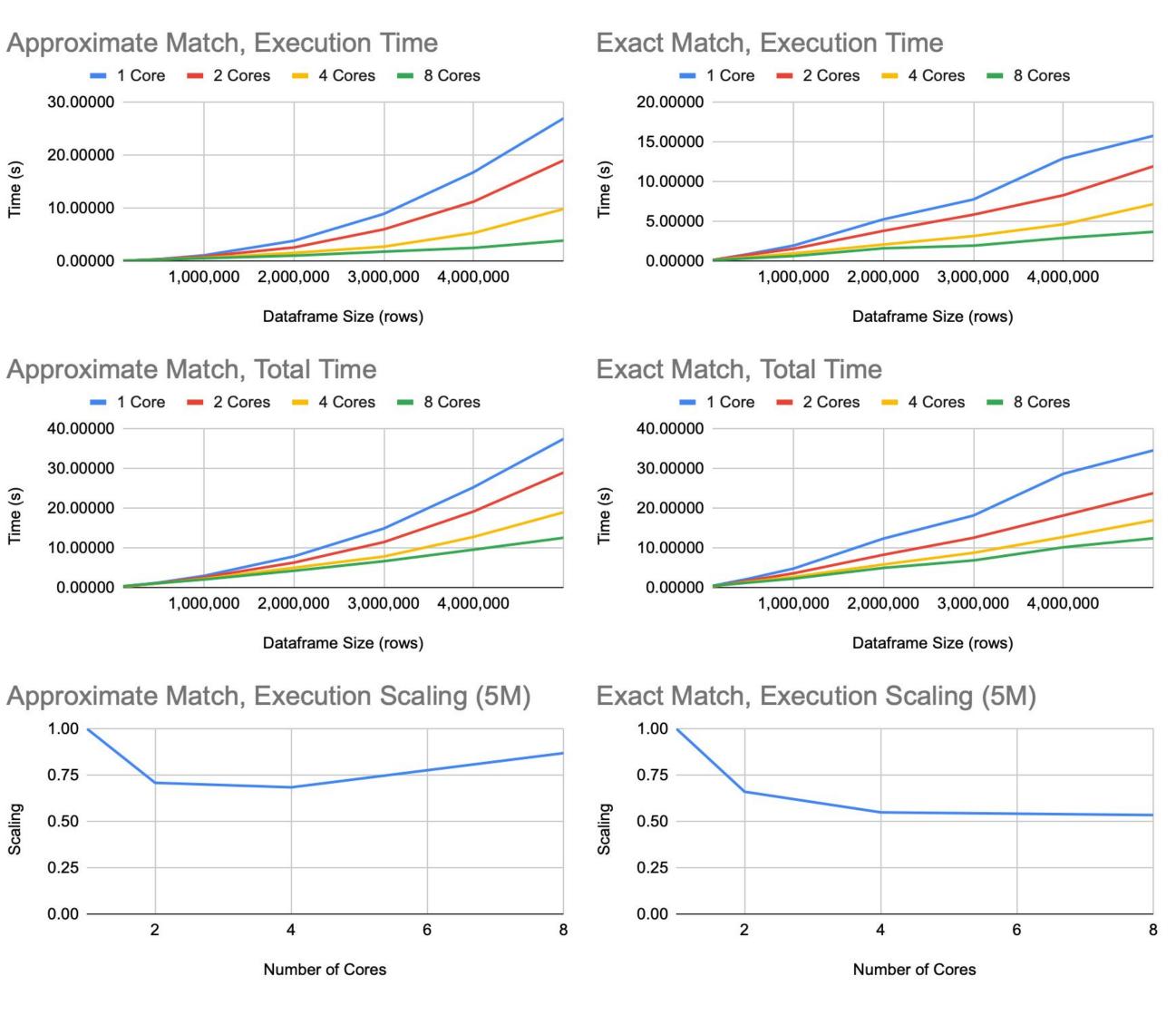
- Contains branching logic for match type, and uses fastest implementation depending on input data types
- Slightly faster implementation for numerical inputs • Performs column compaction
 - Filter out unused columns to reduce network and memory cost
- Constants optimization
 - If constants are inputted for values and col_idxes, does a local search and then replicates the result

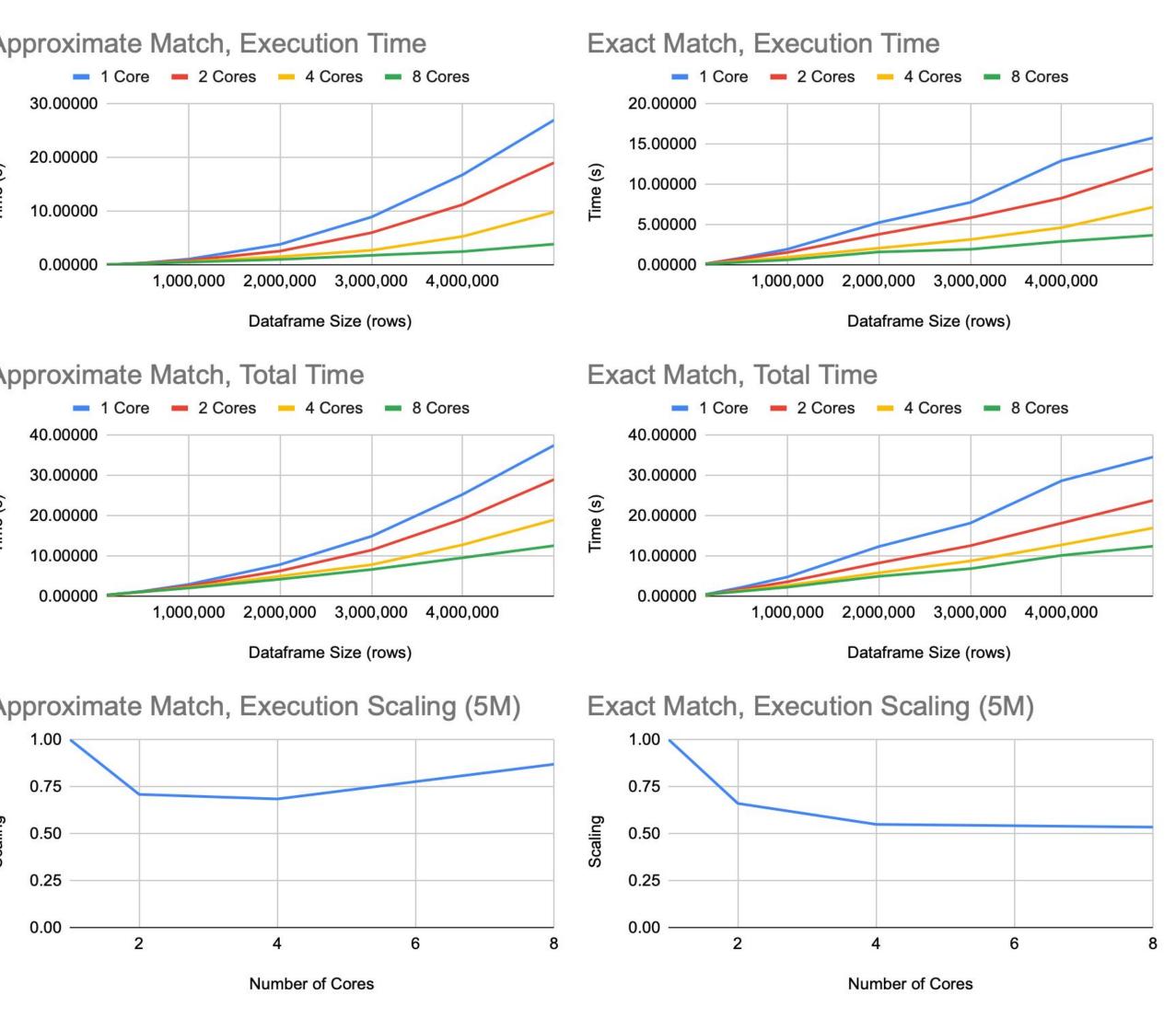
Distributed Method Used

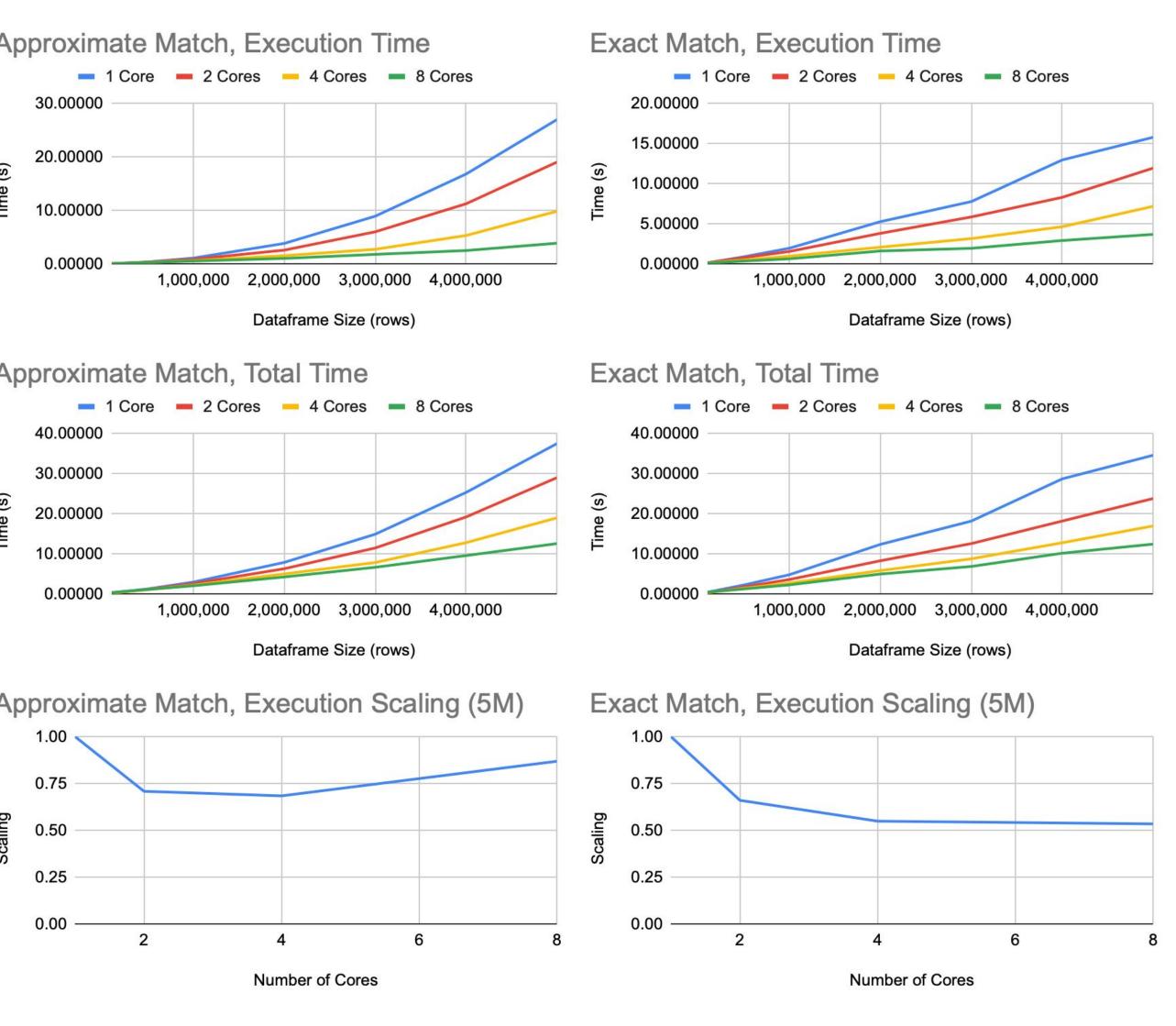
- **Distributed range partition** for approximate match
- **Distributed hash partition** for exact match

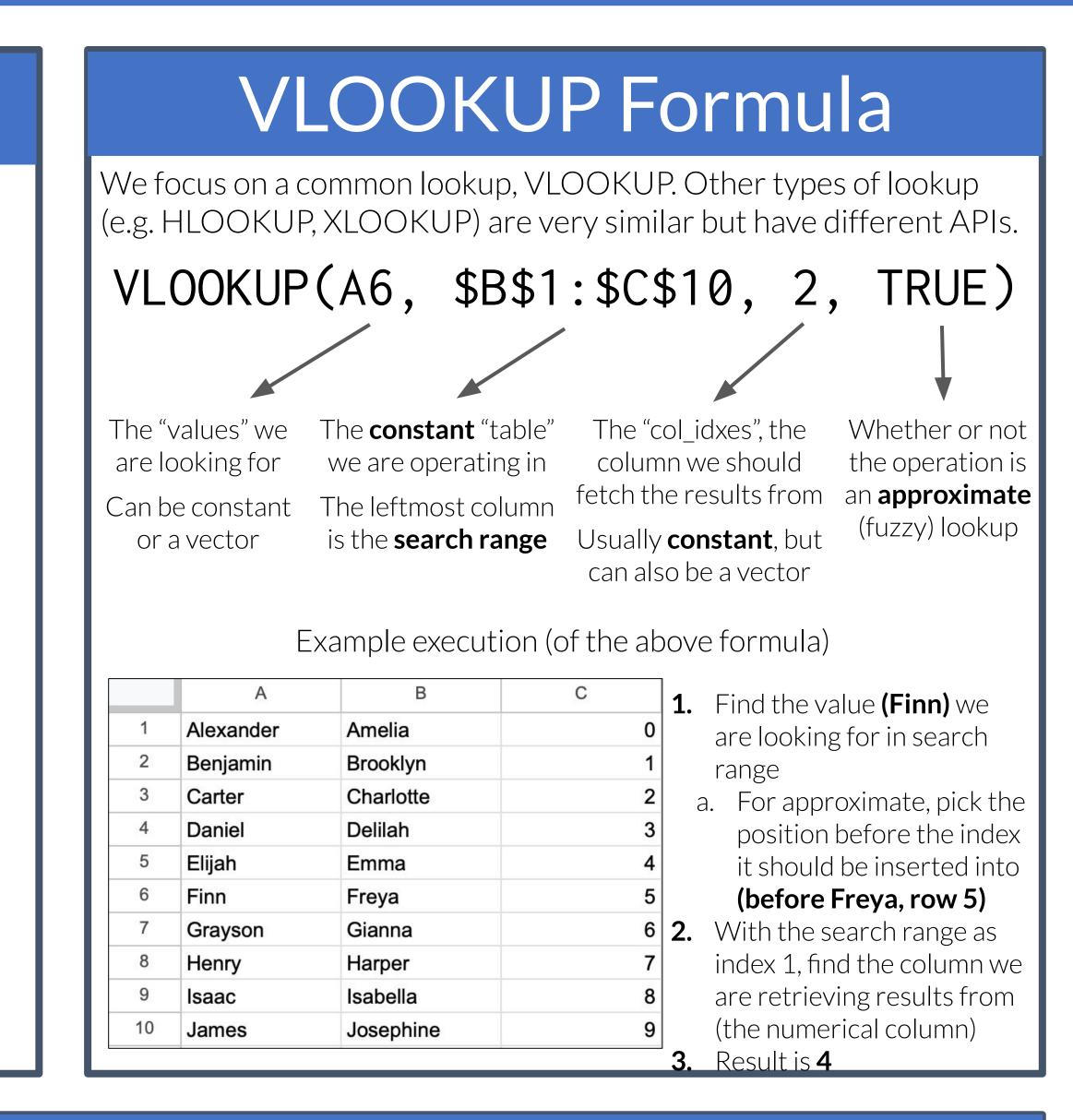
Benchmarking

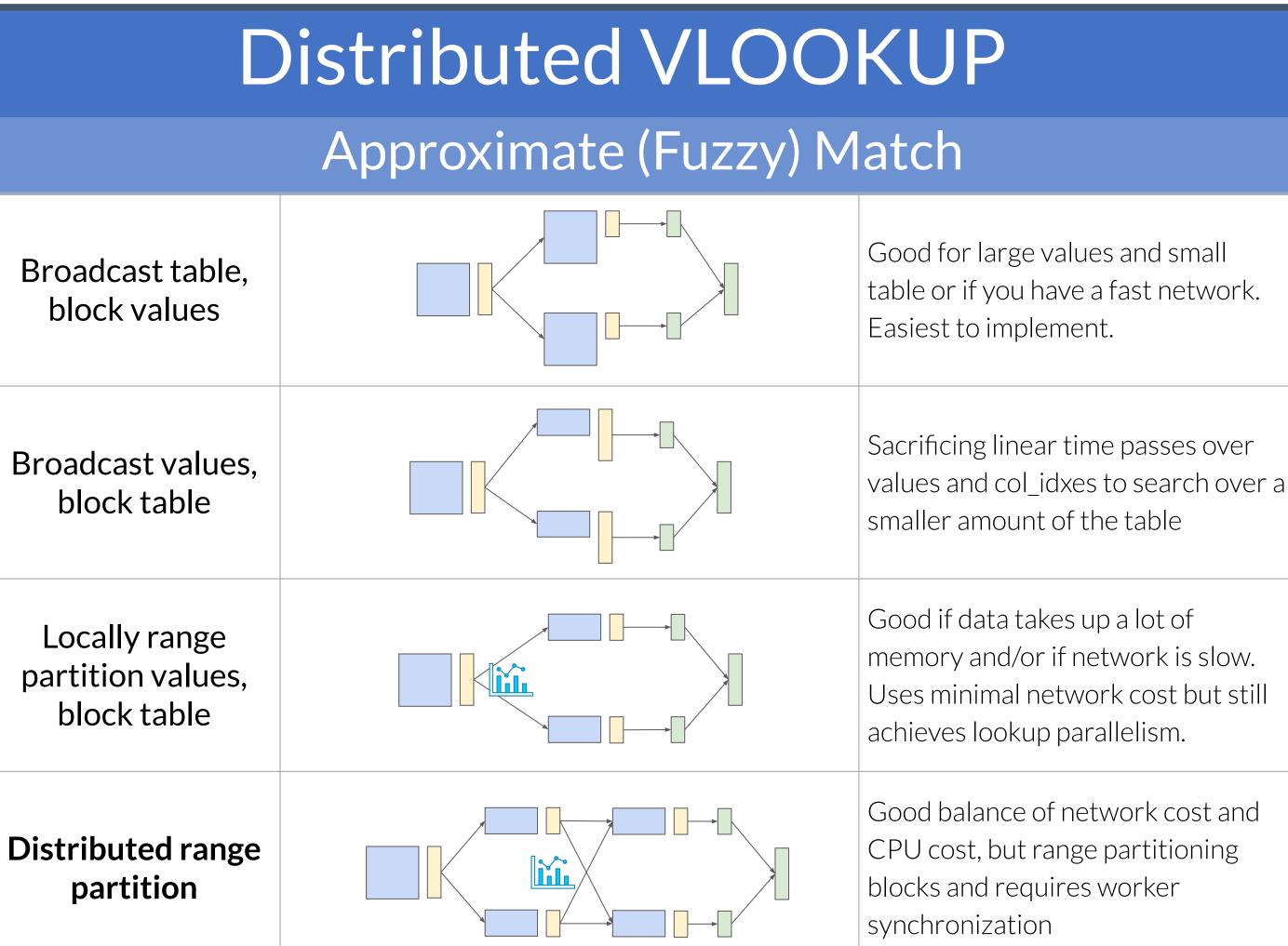
- Randomly generated and sampled string data
- Run on AWS EC2 c5.4xlarge instances
- Total time starts and ends all data on a single node
- Execution time only includes lookup execution
- ~80% execution scaling with 8 cores for approximate match
- ~55% execution scaling with 8 cores for exact match











Combining approximate subresults (correctness lemma)

Having range partitioned values and a block partitioned search range will always produce a correct distributed result by combining local approximate VLOOKUPs

- Two cases: value is found within the range, or it is not (approximate match). If it's found, it is correct.
- If it's not found, the edge cases are when the desired value sits at edges of the blocked search range. • If there are duplicates between blocks, the value will always be partitioned into the worker with the lower index, and since VLOOKUP approximates before, it will find the correct value.

Exact Match		
Broadcast table, block values		Good for large values a table or if you have a fa
Locally hash values and table		Sacrificing linear time p values and col_idxes to smaller amount of the
Distributed hash partition		Good if data takes up a memory and/or if netw Uses minimal network achieves lookup paralle
Distributed range partition		Only useful if you knov distribution of data, or quantile estimation alg
Symmetric hash lookup		(Future work) could be streaming lookup

