

Parallel Lookup Functions for High-Performance Data Exploration

Background

Implementation + Evaluation

Distributed VLOOKUP

Connor Lien, Dixin Tang, Aditya Parameswaran

VLOOKUP Formula
Lookup functions are extremely popular in spreadsheet data analysis

● Incredibly intuitive and common in Excel and Google Sheets
● Can powerfully help users synthesize data

Lookup functions scale extremely poorly

● Excel and Google Sheets take minutes on large inputs, and fail to handle
cases with many rows which limits the function’s use case

● Currently no APIs that support fast lookups for tabular data

Idea: scale lookup functions using distributed algorithms based on database
joins and well-known approximate search algorithms

● Discuss the tradeoffs of each in terms of CPU cost, network cost, and
implementation simplicity

Unique Challenges

● Must preserve order — track with an index column
● Combining subresults of approximate (fuzzy) matching
● Extra communication cost due to shuffling large tables

VLOOKUP(A6, B1:C10, 2, TRUE)

The “values” we
are looking for

Can be constant
or a vector

The constant “table”
we are operating in

The leftmost column
is the search range

The “col_idxes”, the
column we should

fetch the results from

Usually constant, but
can also be a vector

Whether or not
the operation is
an approximate

(fuzzy) lookup

Example execution (of the above formula)

1. Find the value (Finn) we
are looking for in search
range

a. For approximate, pick the
position before the index
it should be inserted into
(before Freya, row 5)

2. With the search range as
index 1, find the column we
are retrieving results from
(the numerical column)

3. Result is 4

We focus on a common lookup, VLOOKUP. Other types of lookup
(e.g. HLOOKUP, XLOOKUP) are very similar but have different APIs.

Approximate (Fuzzy) Match

Exact Match
Case Study: Dataframes

● Lookup functions using pandas DataFrames
○ Why pandas? It’s convenient, fast, and has a built-in index

to track order (though sorting index can be slow)
● Parallel execution achieved using Dask

High-Level API

● Contains branching logic for match type, and uses fastest
implementation depending on input data types
○ Slightly faster implementation for numerical inputs

● Performs column compaction
○ Filter out unused columns to reduce network and

memory cost
● Constants optimization

○ If constants are inputted for values and col_idxes, does a
local search and then replicates the result

Distributed Method Used

● Distributed range partition for approximate match
● Distributed hash partition for exact match

Benchmarking

● Randomly generated and sampled string data
● Run on AWS EC2 c5.4xlarge instances
● Total time starts and ends all data on a single node
● Execution time only includes lookup execution
● ~80% execution scaling with 8 cores for approximate match
● ~55% execution scaling with 8 cores for exact match

Broadcast table,
block values

Good for large values and small

table or if you have a fast network.

Easiest to implement.

Broadcast values,
block table

Sacrificing linear time passes over

values and col_idxes to search over a

smaller amount of the table

Locally range
partition values,

block table

Good if data takes up a lot of

memory and/or if network is slow.

Uses minimal network cost but still

achieves lookup parallelism.

Distributed range
partition

Good balance of network cost and

CPU cost, but range partitioning

blocks and requires worker

synchronization

Combining approximate subresults (correctness lemma)

Having range partitioned values and a block partitioned search range will always produce a correct distributed
result by combining local approximate VLOOKUPs

● Two cases: value is found within the range, or it is not (approximate match). If it’s found, it is correct.
● If it’s not found, the edge cases are when the desired value sits at edges of the blocked search range.

○ If there are duplicates between blocks, the value will always be partitioned into the worker with the
lower index, and since VLOOKUP approximates before, it will find the correct value.

Broadcast table,
block values

Good for large values and small

table or if you have a fast network

Locally hash values
and table

Sacrificing linear time passes over

values and col_idxes to search over a

smaller amount of the table

Distributed hash
partition

Good if data takes up a lot of

memory and/or if network is slow.

Uses minimal network cost but still

achieves lookup parallelism.

Distributed range
partition

Only useful if you know the rough

distribution of data, or use a

quantile estimation algorithm

Symmetric hash
lookup

(Future work) could be used for

streaming lookup

