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ABSTRACT

The effective development of NLP models requires specifying their behavior on specific concepts
and ensuring high performance on those concepts. This is important to encode business rules, correct
undesirable behavior, and ensure alignment with user values. However, it’s hard to generate data for a
concept that does not lead to shortcuts or interference with the original data or other concepts. In
this paper we propose CoDev, a framework for collaborative development of NLP models. Our main
insight is learning a local model for each concept, and a global model to integrate the original data
with all concepts. We then steer a large language model such that it generates in-concept instances
where local and global disagree, i.e. regions that haven’t been yet learned or properly specified. Our
experiments show CoDev is effective at helping users operationalize concepts and avoid interference
for a variety of scenarios, tasks, and models.

1 Introduction

Teaching concepts to models is often necessary, either to encode certain values or business logic, or to fix existing
failures. A concept relates a set of inputs to desired behaviors, e.g. “religion does not connote sentiment” informs the
effect that religious words should have on sentiment prediction (none). Similarly, in the context of natural language
inference (NLI), the broader concept of “downward monotonicity” specifies entailment relations when certain parts of
expressions are made more specific, e.g. (“All cats like tuna”, “All small cats like tuna”).

The standard way of teaching concepts to models is adding new training data that exemplifies the concept, e.g. adding
neutral sentences containing religious words Dixon et al. [2018], or adding entailment pairs that illustrate downward
monotonicity Yanaka et al. [2020]. However, it is hard to ensure that the data provided does not to lead to shortcuts,
i.e. spurious correlations or heuristics that allow models to make predictions without capturing the true underlying
concept or logic, such as “all sentences with religious terms are neutral”, or “going from general to specific leads to
entailment”. Further, the model may overfit – fail to generalize from the instances provided to the actual concept, e.g.
only recognizing pairs in the form (“all X...”, “all ADJECTIVE X...”), and not pairs like (“all animals eat”, “all cats
eat”). Finally, both shortcuts and overfitting can lead to interference with the original data or other concepts, e.g. leading
to failures on “I love Islam” or pairs like (“Some cats like tuna”, “Some small cats like tuna”). In sum, operationalizing
concepts is challenging, since users typically cannot think of all concept boundaries and interactions in advance.

One possible direction is to ask domain experts to create data that covers the concept as comprehensively and precisely
as possible, e.g. the GLUE diagnostics dataset Wang et al. [2018a] or the FraCaS test suite Cooper et al. [1996].
However, these datasets are often expensive to create, small (and thus not suitable for training), and not exhaustive,
as even experts still fail to think about all aspects and nuances of a concept Ribeiro and Lundberg [2022]. Another
direction having users provide data incrementally while they receive feedback from the model, e.g. adversarial training
Kiela et al. [2021] or adaptive testing Ribeiro and Lundberg [2022]. These do not require users to think about everything
in advance, and can expose and correct model weaknesses. However, adversarial training does not include the notion
of concepts explicitly, and adaptive testing does not address the interaction between different concepts or between a
concept and the original data. As a result, users may not explore concept boundaries efficiently, and thus do not know
when they have sufficiently covered a concept or whether they have introduced interference with other concepts.

In this paper, we introduce Collaborative Development (CoDev), a framework that allows users to collaborate with
AI systems and other users in specifying concepts and teaching them to models. Our key insight is making concepts
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Figure 1: CoDev loop for operationalizing a concept. (a) The user starts by providing some seed data from the concept
and their labels, (b) they are used to learn a local concept model. (c) GPT-3 is then prompted to generate new examples,
prioritizing examples where the local model disagrees with the global model. (d) Actual disagreements are shown to
the user for labeling, and (e) each label improves either the local or the global model. The loop c-d-e is repeated until
convergence, i.e. until the user has operationalized the concept and the global model has learned it.

explicit by learning a local model for each concept, in addition to a global model that integrates the original data and all
additional concepts. When operationalizing a new concept, we rely on a large language model (LLM) to generate new
instances (similar to Ribeiro and Lundberg [2022]), and ask users to label examples in the disagreement region between
the local concept model and the global model (Figure 1). Intuitively, these examples are either cases not yet learned by
the global model, or cases where the concept is not yet properly specified. As users label these examples, both models
are updated until convergence, i.e. until the concept has been learned in a way that does not conflict with prior data or
prior concepts. In a sense, each local model is an ever-improving cheap proxy for the user in its own concept, whose
speed of prediction allows users to explore the boundaries between concepts and existing data.

Our experimental results demonstrate the effectiveness of CoDev in operationalizing concepts and handling interference.
We first run a simplified version of CoDev, where instead of using GPT-3 as a generator we iteratively select examples
from an unlabeled pool for labeling. We show that CoDev outperforms random sampling and uncertainty sampling in
teaching a state-of-the-art NLI model about downward-monotone and upward-monotone concepts Wang et al. [2018a],
as well as teaching a high-accuracy roberta-large base model about four other Amazon products. We then demonstrated
that CoDev can perform well even with biased seed data, outperforming a model that relies solely on biased data
collection. Finally, we evaluated CoDev with users in the loop and showed that it outperformed AdaTest Ribeiro
and Lundberg [2022], a state-of-the-art tool for debugging NLP models that also uses GPT-3. In a pilot study, we
demonstrated that CoDev helped users clarify their concepts.

2 Setup

Let x be a text string, and y a categorical label, e.g. sentiment (positive, negative, neutral). We assume there is a true
function f(x) = y that we aim to approximate with a model f̂(x), and further assume we have access to a “base”
dataset D0 = {(x1, y1), . . . , (xn, yn)}, e.g. of movie reviews, from base distribution P0. We refer to the model trained
on D0 as the base model f̂0.

Concepts. A concept Ci is associated with a distribution Pi over the input space, e.g. a concept might place probability
mass exclusively on sentences containing religious words. We say x ∈ Ci if Pi(x) > 0. Since it’s hard for users to be
exhaustive, we do not assume users can generate from Pi, but that they can label any x with f(x), and as to whether it
is in Ci or not. We further assume users can provide a very small number samples in the support of Pi.

Objective. Without loss of generality, we assume that we have k users developing a model collaboratively, each with
their own concept. Our goal is to train a model f̂ that does well on both the base distribution and all concepts, i.e.,
minimizing the following objective,

1

k + 1

k∑
i=0

Ex∼Pi
[f̂(x) ̸= f(x)]. (1)
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3 Collaborative Development of NLP models

(a) The initial data (P0) is el-
liptical Gaussian

(b) The user concept (Pi) is
spherical Gaussian

(c) local function for the user
data

(d) disagreement regions be-
tween local and global models

Figure 2: (a) a model is trained on two elliptical Gaussian (b) as a result the model is tilted (dashed line) in comparison
to the true classifier (solid line). The spherical Gaussian are showing a user concept, who is interested to find bugs in
the model and teach the model about the new concept. However, since the model (dashed line) have high accuracy on
the user concept it is hard to find bugs and teaching the model requires data from the low probability region. (c) we fit a
classifier to the Spherical Gaussian which can be done with only a few data points, (d) we then focus on disagreements
between these two models to find bugs in the user concept.

In this section we describe how a single user operationalizes their concept (i.e. produces a dataset Di) in the context of
an existing global model f̂ trained on the base dataset D0 and previous concepts D1:i−1.

If f̂0 could already “solve” the concept, i.e. f̂0(x) = f(x) for all x ∈ Ci, we would be done and there would be no
need for Di. Thus, what we really want is for Di to specify the boundary around “failures”, cases not currently handled
by f̂0. We abstract away the choice model and learning procedure, assuming that the model can learn the concept given
Di (in practice, we use neural networks that are expressive enough).

3.1 Sampling from the concept

Since by assumption we cannot sample from the concept distribution Pi, it is a challenge to find regions of Pi where
f̂0 fails. To address this, we use GPT-3 Brown et al. [2020] as a generator G to simulate a random walk within the
concept. To do so, we construct a prompt with m in-concept examples, and use this prompt as input to G to generate
more samples. Then, we ask the user in the loop to accept or reject each generated sample x′ (x′ is accepted if x′ ∈ Ci),
and also to label the accepted x′ with f(x′). The value of m controls the tradeoff between precision and recall, with
high m generating more in-concept examples and low m exploring the space more broadly.

Under some conditions it can be shown that G simulates a Markov chain with stationary distribution Pi (Appendix A),
but the weaker condition of connectivity suffices for finding the concept failures, i.e. there must be a path between any
x′, x′′ ∈ Ci with nonzero transition probabilities according to G and the prompt. That is, if the concept is connected,
with enough time we should be able to find regions of Pi that are not already learned by f̂0.

While sampling from G eventually leads to the yet-unlearned concept regions, it is an inefficient use of human effort,
as it does not use the user labels to guide generation (i.e. the user has to label many examples that the current model
already handles correctly). A better approach would be ask the user to label in a way that maximizes the expected
information gain for the concept, to which we now turn.

3.2 Local Concept Models

Complex functions can be approximated by simpler functions in a local neighborhood, as evidenced by theoretical
results (e.g. Taylor expansion) and empirical applications Ribeiro et al. [2016], Lundberg and Lee [2017]. Since a
concept is a natural local neighborhood, we use this insight and learn a local model f̂i to approximate f(x) in Ci.

We present a toy example for intuition in Figure 2, where we show toy distributions P0 (Figure 2a) and P0 with an
additional concept P1 (Figure 2b). In 2b, f̂0 learned on samples from P0 (dashed line) predicts most of P1 correctly,
except for a small region in the bottom left quadrant. However, we would need many random samples from P1 in order
to learn that region, and reach the best model f̂ (solid line in Figure 2b). In contrast, we can learn a good local model
f̂1 for P1 with a trivial number of samples (Figure 2c). This local model can be used to produce a disagreement region
between f̂1 and f̂0 (Figure 2d), and sampling from that region would lead to convergence much faster.

3
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More generally, we define a score function as the disagreement between the local and global function. This score
function is used to steer generation such as to maximize the score of generated samples x′, by adding instances to the
prompt for G with probability proportional to their score (similar to Ribeiro and Lundberg [2022], who use a different
score function). We note that models may present false agreement on some samples, i.e. f̂i(x′) = f̂0(x

′) ̸= f(x′). To
account for this, we also sample from the agreement region sometimes, with a probability that decays over time as we
gain more confidence in the local model.

(a) seed (b) local fit (c) generation (d) selection (e) update

Figure 3: This figure illustrates the main steps debugging in CoDev: (a) The user starts by providing a small number of
data points and their labels within their domain (represented by the black circle), (b) we fit a simple model (shown as a
linear model) to represent the user’s concept, (c) we use the generator (G) to generate data points towards the region
where the local model disagrees with the global model, (d) a diverse set of data points are selected for the user to label,
(e) based on the user’s feedback, the local and global models are updated until convergence.

Figure 4: Comparing the first and last figure in 3 shows that the change in the local region had lead to other changes
outside the concept. Those regions can belong to some other concepts as well cause interference.

3.3 Operationalizing a concept: from disagreement to convergence

The local and global models disagree on regions where the concept has not yet been learned (global is wrong) or the
local model does not fit the user’s concept correctly (local is wrong). Thus, every label from the disagreement region
results in an improvement in whichever model is incorrect. As labeling progresses, we update both the concept model
f̂i and the global model f̂ until we reach convergence (i.e. f̂ has learned the concept Ci). Note that while f̂i is trained
on data from Pi, f̂ is trained to do well on the base distribution P0, as well as on all concepts P1:k.

We present pseudo-code for operationalizing a concept in Algorithm 1, and illustrate it in Figure 3. The local and
global models are initialized in lines 1-2 (Figure 3a and b). In line 5 (Figure 3c), G is prompted such as to generate
in-concept samples that are likely to be in the disagreement region. Then, in line 6 (Figure 3d), we select a batch of b
examples for labeling according to the disagreement score of the generated instances. This generation-labeling loop is
repeated for L iterations, after which both the local and global models get updated in lines 7-8 (Figure 3e). For the
sake of interactivity, in practice we do not train from scratch when updating the models, and instead finetune them
from a previous checkpoint. After a few iterations, f̂ and f̂i converge (i.e. the user has operationalized the concept
and the global model has learned it). If the number of generated samples b ∗ L is large enough, we can assume that
no disagreement on generated sample between f̂ and f̂i means they have converged, and thus we stop and output the
generated data Di (line 9).

3.4 Handling interference between concepts

Any updates made to one region of the global model can have an impact on other regions (see Figure 4 for intuition).
Having local functions (cheap experts) enable us to check interference efficiently. Every time that a user operationalizes
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Algorithm 1: Operationalizing a new concept i
input :Base dataset D0

Concept datasets D1:i−1

A small set of samples from concept Di

1 Init local: Train f̂i on Di;
2 Init global: Train f̂ on D0:i−1;
3 do
4 for L iterations do
5 Generation: Prompt G with subset from Di chosen with probability ∝ |f̂(x)− f̂i(x)| ;
6 Labeling: Select b samples with prob. ∝ |f̂(x′)− f̂i(x

′)|. Users reject x′ if out of concept, or add to Di

with label f(x′);

7 Update local: Train f̂i on Di;
8 Update global: Train f̂ on D0:i;
9 while Di was updated this round;

output :A dataset Di

a concept according to Algorithm 1, we check the resulting global model f̂ against the local concepts for all previous
concepts. To do so, we re-run Algorithm 1, only asking the user for labels if there is a newfound disagreement region.
In practice, this means that a user adding a new concept needs to make sure it does not break any concepts from other
users, a process similar to regression testing in software engineering.

While we want to handle interference, having a multiplicity of concepts is beneficial in exposing false agreement regions
between the global model and any individual concept model. In other words, while both f̂ and f̂i may be relying on
the same shortcut to solve some regions of Pi, it is unlikely that this shortcut does not cause disagreement between f̂

and all local models f̂j for j ̸= i. In this case, the interference caused by adding Cj is actually beneficial, as it further
refines concept Ci.

In practice the original dataset (D0) is often very large and we cannot fine-tune the model on D0:k. Instead of choosing
the whole D0, every time we sample data points with highest disagreement between f̂0 and f̂ from D0. In other word,
we treat f̂0 as a user with concept distribution P0, this enable us to deal with interference with original model as well
(as an example in Figure 2 we might only choose the data points from elliptical Gaussian in disagreement region).

4 Experiments

In 4.1 we run experiments with a simplified version of CoDev, where instead of using GPT-3 as a generator we
iteratively select examples from an unlabeled pool for labeling. Since we do not need users in the loop, this allows us to
compare the data selection mechanism of CoDev to baselines such as random selection and active learning (noting that a
generator is needed to actually operationalize a concept in realistic scenarios). In 4.2 we add GPT-3 back as a generator,
but use a high performing model as an oracle (once again bypassing the need for user labels) in a controlled experiment
where we start the concept from a biased set. Finally, in 4.3 we evaluate CoDev with users in the loop, and compare it
to AdaTest Ribeiro and Lundberg [2022], a state-of-the-art tool for debugging NLP models that also uses GPT-3.

4.1 CoDev on unlabeled data

We adapt CoDev so that it selects instances from a pool of unlabeled data based on the disagreement score rather than
using GPT-3 as a generator (lines 5-6 in Algorithm 1). We compare CoDev with two data selection baselines: random
selection and uncertainty sampling Lewis [1995], Nguyen et al. [2022]. Each method selects a batch of 50 examples per
iteration (CoDev selects examples randomly in the first batch), after which models are retrained.

Operationalizing a concept. We use RoBERTa-Large Liu et al. [2019] finetuned on MNLI (binary) Wang et al.
[2018b] as a base model, and use the downward-monotone concept from an NLI monotonicity dataset Yanaka et al.
[2020] as a pool of unlabeled data. The base model starts with high accuracy on the base validation dataset (93.5%), and
low accuracy on the concept (23.5%). We present accuracy on the concept over iterations in Figure 5. While accuracy
on the base data remains constant throghout iterations, CoDev’s disagreement-based sampling is more efficient than
uncertainty sampling or random selection.
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Figure 5: CoDev outperforms other data selection baselines when learning downward-monotone concept in MNLI task.

MNLI Amazon

Overall
average

Worst
case

Overall
average

Worst
case

Random sampling 89.6 87.7 87.6 85.3
Uncertainty Sampling 91.6 90.6 87.9 85.9
CoDev 91.9 90.7 88.2 86.0

Table 1: CoDev outperforms data selection baselines when simultaneously learning two concepts for MNLI (upward
and downward monotone) and 4 concepts (product categories) for sentiment analysis. Results shown are an average of
10 runs.

Avoiding interference In order to evaluate interference between concepts, we try to learn various concepts simul-
taneously. We use the same NLI model and concept as the previous paragraph, and add upward monotone Yanaka
et al. [2020] as an additional concept. We also use RoBERTa-LARGE finetuned on the “digital ebook” category of
Amazon Reviews as a base model, and use 4 additional product categories as concepts to be learned (pet-product,
home, home-improvement, and wireless). We run 10 iterations of each method, with random sampling and uncertainty
sampling selecting an equal number of instances from each concept per round.

Table 1 shows the per-concept average and worst case accuracy of each method, where we note that CoDev produces
better models on average.

4.2 CoDev with simulated user

Here we add GPT-3 back as a generator, but avoid the need of user labels by training a high accuracy model as an oracle
to simulate user labels. As an oracle, we train RoBERTa-Large on the whole Amazon Review dataset where we only
keep reviews with rating 5 (positive sentiment) and rating 1 (negative sentiment). The accuracy of oracle on validation
dataset is 98.6%. We train a weaker base model by finetuning BERT-base-uncased on reviews that contain the word
“install”.

Our simulated concept consists of reviews containing the phrases “battery life” or “my skin” (from now on, we refer to
this concept as Skin-Battery, or SB). We split these reviews into a development set (to initialize CoDev and baselines)
and a test set. We simulate the scenario where the user starts with a biased subset of the concept, by initializing the

biased SB SB

Base 86.7± 2.5 82.6± 1.7
Random sampling 98.6± 0.9 80.7± 1.6
CoDev 94.9± 1.7 94.5± 1.1

Table 2: A comparison between CoDev and Random sampling when the dataset is biased. We have access to a
biased dataset where reviews about skin are always negative and reviews about battery are always positive (biased-SB).
CoDev outperforms random sampling in the whole dataset that contains all the reviews about skin and battery (SB) by
effectively conceptualizing concepts and avoiding shortcuts.
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Concept Examples Example of bugs found by CoDev

X person = not X person How can I become a positive person?
How can I become a person who is not negative?

predicts duplicate
underfit bugs

{
How can I become a mysterious person?
How can I become someone with no mystery?

predicts non-duplicate
overfit bugs

{
How can I become a blind person?
How can I become someone who has lost his (physical) vision?

Modifiers changes question
intent

Is Mark Wright a photographer?
Is Mark Wright an accredited photographer?

predicts not-duplicate
underfit bugs

{
Is he an artist?
Is he an artist among other people?

predicts duplicate
overfit bugs

{
Is Joe Bennett a famous court case?
Is Joe Bennett a famous American court case?

Table 3: Examples of bugs found by CoDev in the concepts introduced by CheckList, which were subsequently
“debugged” using AdaTest, demonstrating that AdaTest had not yet fully operationalized these concepts. For each
concept, we show an example of overfit bug, where the model has fit too closely to the concept’s data and fails to
generalize to similar data points, as well as an example of an underfit bug, where the model relies on some shortcuts
related to concept’s data and misclassifies similar examples.

Corig : “X = not antonym (X)”, Cnew : “Modifiers changes question intent” Corig : “X = synonym (X)”, Cnew : “less X = more antonym (X)”

CoDev AdaTest CoDev AdaTest
broken by new concept 7/50 24/50 9/50 18/50
fixed by new concept 5/50 2/50 20/50 18/50

Table 4: Comparison of CoDev and AdaTest in terms of handling interference. For both methods, we labeled 50
sentences in the disagreement region of a model that only learned the original concept and a model that learned both
original and the new concepts. CoDev outperforms AdaTest when the new concept conflicts (top) or is similar (bottom)
to the original concept.

concept with 10 instances such that instances with “battery life” are always positive, and those with “my skin” are
always negative. We then run CoDev with the oracle for 5 rounds adding 10 data points in each round. As shown in 2,
CoDev is able to achieve high accuracy on all of SB, despite starting with a biased sample, while the same number of
random instances from biased SB increases accuracy on it to the detriment on accuracy on the whole concept.

Qualitatively, GPT-3 starts generating in-concept instances without the bias, as that is where the local concept model
disagrees with the base model. This controlled experiment illustrates how a generator focused on disagreements can be
helpful in exploring the boundaries of concepts, even when we start from a biased sample.

4.3 CoDev with real users

Operationalizing concepts. We compare CoDev to AdaTest Ribeiro and Lundberg [2022], using data and concepts
made available by Ribeiro and Lundberg [2022]. They finetune a RoBERTa-Large model on the Quora Question Pairs
(QQP) dataset (validation accuracy 92.2%), and then iteratively add data with GPT-3 (adaptively trying to find failures)
until they “fix” 6 concepts from CheckList tests Ribeiro et al. [2020]. Ribeiro and Lundberg [2022] run adaptive testing
“until finding failures becomes qualitatively difficult”.

For each concept, we initialize CoDev with their generated data as Di. Even though the model has been ‘debugged’
with AdaTest, CoDev quickly reveals ≈ 5 semantically meaningful sub-categories of bugs for each concept (with many
failures within each sub-category). We show a few examples from different sub-categories in Table 3, which illustrate
that AdaTest had not yet operationalized various regions of concepts where the model was still failing.

Interference. We now compare CoDev with AdaTest in terms of handling interference. To do so, we pick pairs of
concepts Corig, Cnew that might cause interference with one another, but that were debugged and reported as “fixed”
by Ribeiro and Lundberg [2022]. We then run CoDev on these pairs, noting that the output of both AdaTest and CoDev
are small concept datasets Dorig and Dnew.

We then train two models for each method, one finetuned on Dorig and one finetuned on the union of Dorig and Dnew.
Finally, we generate new data from Porig and manually label 50 instances where there is disagreement between the
models, to check if adding Dnew caused interference on Porig. We present the proportion of sentences that were
broken (right to wrong) or fixed (wrong to right) when the new concept is added in Table 4, disregarding instances that
are invalid, out of domain, or for which the label is unclear. The top pair seems more liable to interference between
concepts, but we note that AdaTest data results in much more interference than CoDev data. In the bottom pair, adding
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Task & Topic Seed data Initial rounds Final rounds

Sentiment & Islam
Lewis is a terrorist← Negative
Alice practices Islam← Neutral
Marco goes to the mosque← Neutral

Alice practices radical Islam
Alice is a fundamentalist Muslim
Alice wants to convert everyone to Islam

Alice prays for ISIS
Lewis is Muslim extremist
Lara, president of ISIS, said . . .

Toxicity & Gender I’m a man← non-toxic
men are superior to women← toxic

I’m feminine
women like to use emotion to manipulate

Men have caused most of the wars

Toxicity & Islam ISIS is violent← non-toxic
Muslims are violent← toxic

Dealing with Muslim countries can be tricky
Taliban is violent

Quron is a political manifesto

Table 5: Some examples of a pilot study that qualitatively examines the effectiveness of the CoDev in assisting users in
conceptualizing their ideas and debugging the model. Users typically begin with simple sentences in their concept as
seed data and, as they continue to use CoDev, the CoDev suggestions (disagreements between locally fitted model and
the global model) become increasingly complex.

a concept with CoDev actually improves the original concept more often than interferes with it, while AdaTest data has
a neutral effect.

Pilot Study (qualitative). We run a pilot study where four users (one computer scientist and three with no prior
knowledge of AI) choose a task (sentiment analysis or toxicity) and try to align a model on a concept of their interest
with CoDev. Each participant interacted with CoDev for 5-7 rounds, and reported a perceived alignment of the local
model with their concept as well as an increase in sentence complexity throughout the interaction.

For the Sentiment & Islam, the global model had complete agreement with the user-provided seed data, indicating the
absence of any bugs in the user-provided data. However, in the first round of using CoDev, some disagreement were
found between the fitted local model of the user and the global model. The user identified some of these as bugs in
the global model (e.g. “Alice practices Islam daily” where the global model predicted negative) and some as bugs in
the local model (e.g. “Alice is a radical Islamist” where the local model predicted neutral). After several rounds of
fixing obvious bugs in both the local and global models, the disagreements surfaced were very much in the concept
boundaries, to the point where users cannot specify the correct behavior anymore. For example, the user could not
decide on what the correct sentiment label for the sentence “Alice prays for ISIS” should be.

We observed the same trend for all users, where initial rounds resulted in finding and the fixing regions of clear
misalignment, and later rounds surfacing regions where users could not determine the right label anymore (which
indicates that their concepts were operationalized and learned in regions where the correct label is clear). Table 5
illustrates some examples of the user’s interaction with CoDev.

5 Related Work

Our work relates to three areas of research: debugging, alignment, and interference management. We briefly review the
relevant literature and highlight the differences and contributions of our work.

Debugging. As machine learning models achieve human-like performance on various tasks, it becomes crucial to
identify and fix their failures on specific concepts. Several works have proposed methods to expose and fix such bugs.
Checklist Ribeiro et al. [2020] uses templates to test and improve the robustness of models on different linguistic
phenomena; however, these templates have low precision and recall for finding bugs. Dynabench Kiela et al. [2021]
introduces a framework to iteratively discover the weaknesses of a model by using human-generated adversarial
examples; however, this approach requires human creativity and may miss bugs that are in a small region of the input
space. The most related work to ours is AdaTest Ribeiro and Lundberg [2022], which also leverages a large language
model (LLM) to generate test cases for different concepts. The main difference between our work and AdaTest is that
we use a local function to simulate the user’s preference and update it based on the user’s feedback, while they use
a LLM (and a few prompts) to simulate the user’s behavior. Therefore, their simulator does not adapt to the user’s
feedback and is susceptible to the biases and limitations of the LLM, resulting in lower performance than CoDev.
Moreover, they do not consider the interference among different concepts.

Alignment. Another approach that is closely related to our work is alignment, in which the goal is to align the LLMs
to the human intents. This is a challenging problem since usually human cannot explicitly define their intention. A
common approach for this is reinforcement learning with human in the loop (RLHF) Christiano et al. [2017], in which
the model learns a reward function from the human’s feedback on different outputs. RLHF has been applied to various
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NLP tasks such as summarization Ziegler et al. [2019], story generation Zhou and Xu [2020], evidence extraction
Perez et al. [2019], harmlessness Bai et al. [2022], and general alignment with humans Ouyang et al. [2022]. The main
difference between our work and RLHF is that we use a local function for each concept, instead of a global one for the
whole task, and we generate inputs in the disagreement region between the model to help the user better operationalize
their concept.

Interference management. Interference is a well-known problem in machine learning, as it is hard to change the
model’s behavior locally without affecting other aspects of its performance. One type of interference that has been
studied extensively is the trade-off between accuracy and robust-accuracy, as improving the model’s performance
on adversarial examples (e.g., images with imperceptible perturbations) may decrease its performance on normal
examples. To deal with this interference, some works use self-training with the original model and rely on unlabeled
data Raghunathan et al. [2019], Carmon et al. [2019]. Unlike their work, we do not have access to a reliable model for
self-training and we need to improve the models while handling interference. Another type of interference that has been
investigated is the catastrophic forgetting McCloskey and Cohen [1989], Kirkpatrick et al. [2017], in which learning on
a new task may degrade the performance on the previously learned tasks. To address this interference, some works use
multi-task learning with all the previous data Zhang and Yang [2018], Parisotto et al. [2015], while others use weight
averaging between the original and the fine-tuned model Ilharco et al. [2022]. Unlike these works, we are interested in
exploiting the interference between models, as they can help the user operationalize their concept in the context of the
model better.

6 Conclusion

Specifying model behavior on specific concepts is crucial in the development of NLP models, as it allows users to
encode business rules, fix undesirable behavior, and force alignment with user values. Operationalizing the concept in a
way that avoids shortcuts, underfitting, and interference with prior data is challenging even when we have a single user.
In this paper we presented CoDev, a framework that leverages local concept models and large language models to help
users operationalize concepts effectively while avoiding interference. We showed that CoDev is more effective than
prior work at exploring problematic concept regions, even prior work that uses the same language model and relies on
interactive user feedback.

We envision a future where NLP models are developed in a collaborative fashion, similar to open source software or
Wikipedia, and speculate that harnessing the perspectives and expertise of a large and diverse set of users would lead
to better models, both in terms of overall quality and in various fairness dimensions. For this scenario to materialize,
we need ways to help users express their knowledge, and verify the impact of their proposed changes to models (the
equivalent of “diffs” or “regression tests”). We believe CoDev is a step in this direction.
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A Stationary distribution of the generator

Let PG denote the transition probability of the generator, where PG(x | r = x′) denote probability of generating x
condition on the prompt being x′. We want to create a Markov chain to simulate a random walk within the user’s
distribution (Pi). Specifically, we begin with a user-provided seed data point x and use it as a prompt for G to generate
a new data point x′. If Pi(x

′) > 0, we accept x′, otherwise we remain at x and repeat the process. We are interested in
conditions under which the stationary distribution of this markov chain is Pi

Let’s assume that support of Pi is finite and denote it by S, let P ′
G(x

′|x) be the transition function over S × S where
P ′
G(x | x) = PG(x | x) +

∑
PG(x

′ | x)I[Pi(x
′) = 0] and for x, x′ ∈ S where x ̸= x′ we have P ′

G(x | x′) = PG(x |
x′).

If the transition graph generated by P ′ is irreducible (any state can be reached from any other state) and all its states are
positive recurrent (the expected time to return to a state is finite), then the unique stationary distribution using G is Pi if
the following equality holds:

Ex∼Pi [P ′(x′ | x)] = Pi(x
′) (2)

The above statement states that the probability of a data point (Pi(x)) should be proportional to the probability of
reaching to that point with the transition function of P ′.

If instead of only one data point we use m data points for prompt, we can create a graph where each node is m
data points, and then analyse the stationary distribution of Markov chain on such graph. In this case, when we start
from a node with m examples and prompt the language model with them in this case the probability of going to
(x′, xm, . . . , x2) from (xm, . . . , x1) is equal to P ′

G(x
′ | r = (xm, . . . , x1)).
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