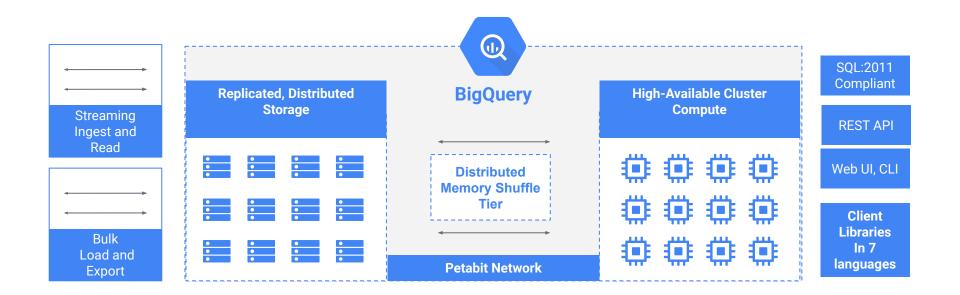
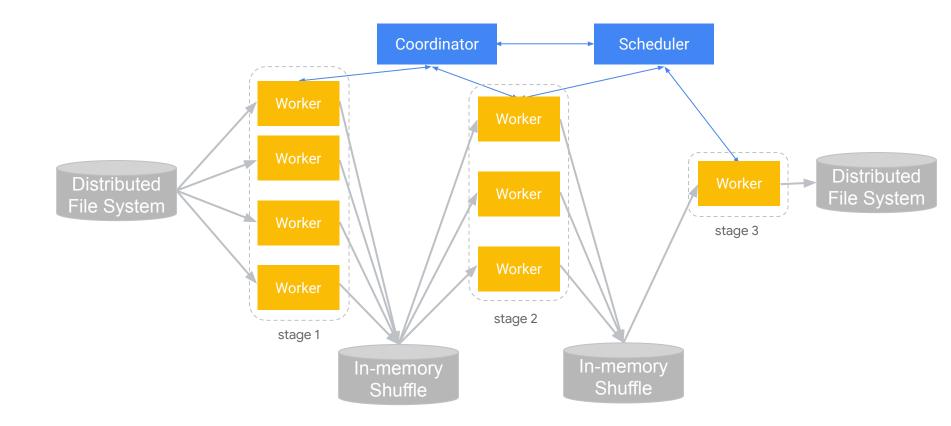
Integrating Unstructured Data Into a Cloud Data Warehouse

Justin Levandoski | UC Berkeley EPIC Lab Offsite

BigQuery Architecture



Dremel: BigQuery's Query Processing Engine



"Serverless" Design Principles and Advantages

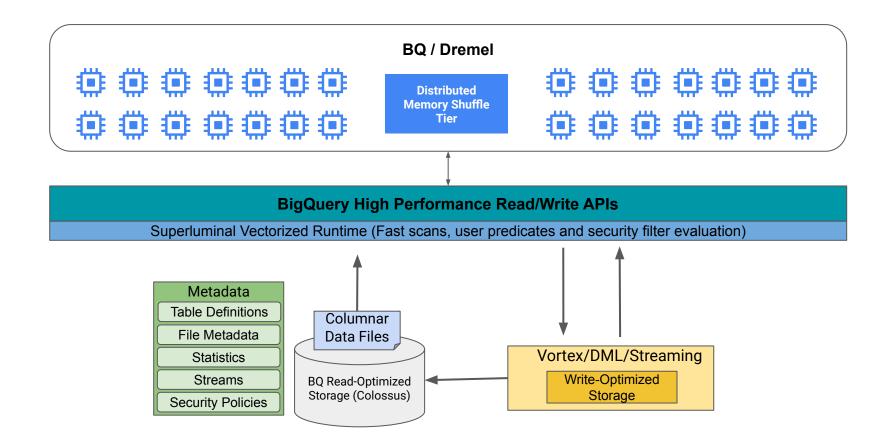
• Disaggregation of compute, storage, memory / shuffle

- On-demand scaling of each resource
- On-demand sharing of resources
- Adapts well to *multi-tenant* usage at lower cost

• Architecture advantages

- Separation of concerns across "components" or "micro-services"
- Re-use / evolve components as needed without large "blast radius"

BigQuery Storage Read/Write APIs



BigLake and Omni Extending BigQuery's Reach

Join TechCrunch+ Login

TechCrunch

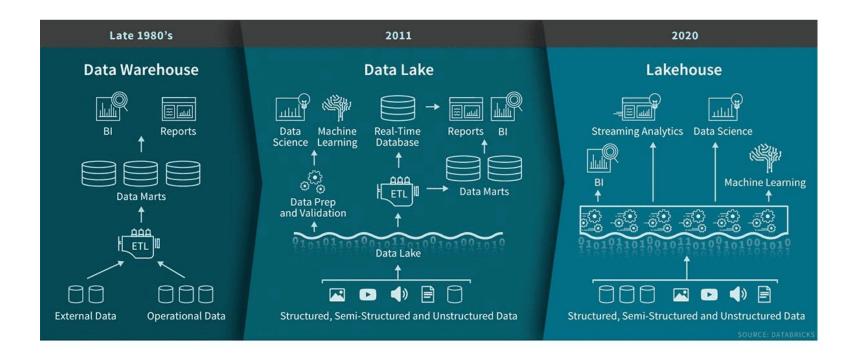
Search Q TC Sessions: Mobility Startups TechCrunch+ Audio Newsletters Videos Advertise Events More

Google Cloud launches BigLake, a new cross-platform data storage engine

Frederic Lardinois @fredericl / 10:00 PM PDT • April 5, 2022

Comment

Toward the "Lakehouse"



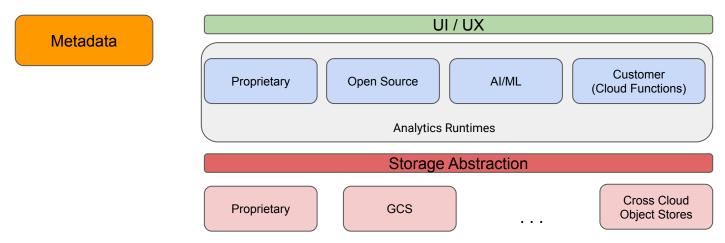
Toward a "Lakehouse"

• Lakehouse features

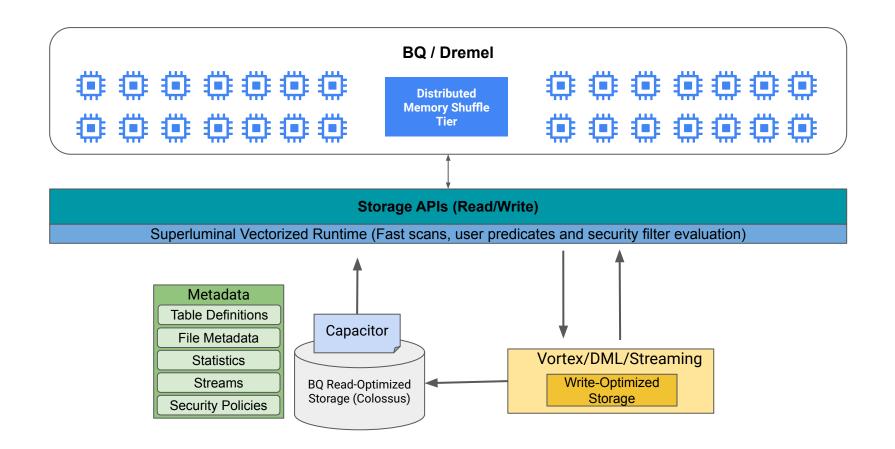
- Support for diverse workloads and analytics engines
- Diverse data types spanning structure, semi-structured, and unstructured
- Support for open formats on object storage with object storage as the "hub"
- Common governance support
- Support for streaming / ACID transactions

• A coupling of systems bound together by common data management principles

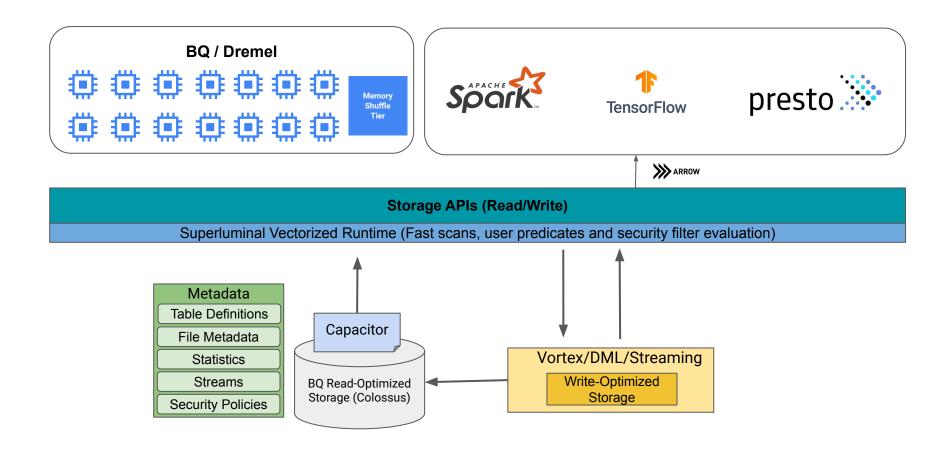
- Choice in data analytics engine usage, storage format and deployment in how they build stacks
- <u>Single story</u> for core data management issues in analytics (the difficult stuff): governance, performance, consistency/transactions, etc.



BigQuery Architecture: Separation of Compute and Storage

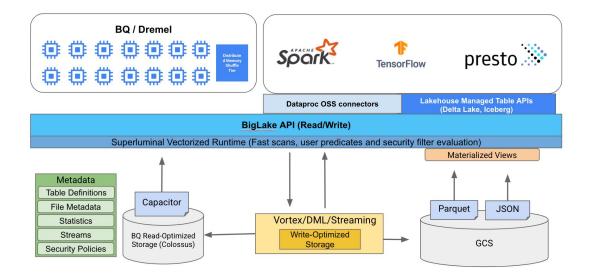


BigQuery Architecture with BigQuery Storage API for OSS Engines



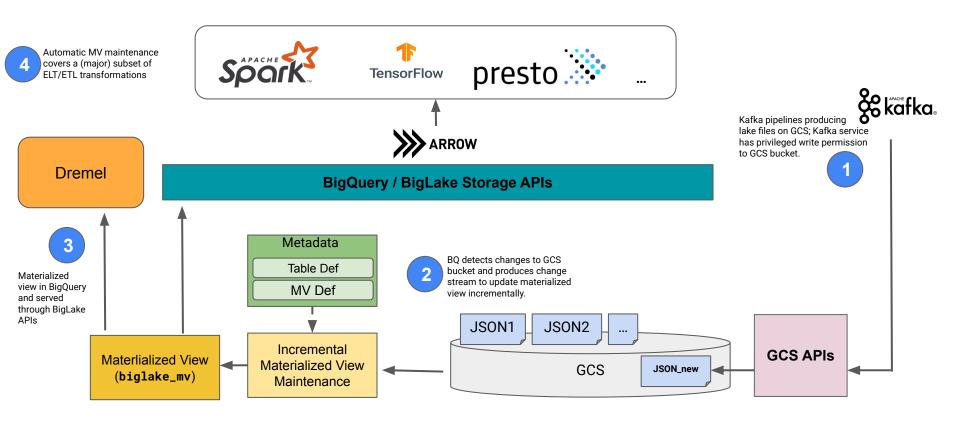
BigLake - Expanding BigQuery Capabilities to GCS and other Object Stores

- Vectorized runtime with columnar scanners efficiently evaluate user predicates
- Data served in Apache Arrow format with security enforced prior to egress
- Vortex stream ingest for efficient streaming and (eventually) DML
- Materialized views on BQ and BigLake tables served through API
- Compatibility with major data lake managed table APIs: Databricks
 Delta Lake and Apache Iceberg
- Flexibility in usage modes, e.g., GCS APIs for ingress

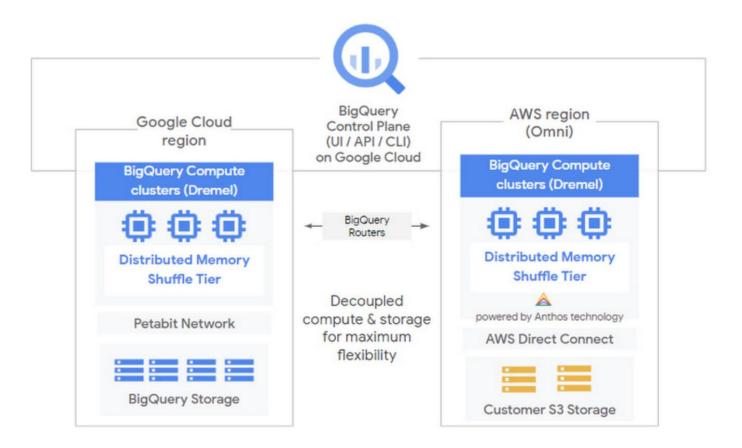


CREATE MATERIALIZED VIEW biglake_mv AS "SELECT COL1 SUM(COL2) FROM biglake_table GROUP BY COL1";

BigLake: Materialized Views / ELT



BigQuery Omni: Extending BigQuery to AWS and Azure



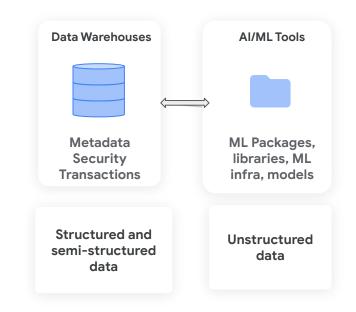
Querying a Multi-Cloud Lakehouse

=	Google Cloud 🔹 bq-omni-demo 👻			Q Search	Products, reso	ources, docs	(/)			
٩	Explorer		weekly_p_all • 🗙 🚺	•						
	Q. Type to search	Amazon S3 storage	weekly_player_data_	gBall	BigLake	Q QUERY	ASK QUESTION	* SHARE	DELETE	L EXPORT
٩	Viewing pinned projects.	Storage	CHEMA DETAILS							
#	▼ bq-omni-demo	· ·								
0	External connections (36)	Azure Data	er property n	ame or value						
0	Q Saved queries (44) II player_data_AWS		me	Туре	Mode	Collation	Policy Tags 🔞		Description	
	player_data_AWS weekly_player_data_gBall	Storag	e	INTEGER	NULLABLE					
	ing player_data_Azure		event_timestamp	FLOAT	NULLABLE					
	weekly_player_data_gPuck		event_name	STRING	NULLABLE					
	in player_data_BigQuery		user_id	STRING	NULLABLE					
	weekly_player_data_agg		platform	STRING	NULLABLE					
	weekly_player_data_gGolf		first_name 🛕	STRING	NULLABLE		Sensitive Tag : Sens	sitive Data		
	▼ 🗊 player_data_GCS	BigQuery	Managed	STRING	NULLABLE		Sensitive Tag : Sens	sitive Data		
	weekly_player_data vHoop	Storage		INTEGER	NULLABLE					
24				STRING	NULLABLE					
	G	oogle Cloud Storage	EDIT SCHEMA VIEW R	DW ACCESS PC	LICIES					

Unstructured Data In a Cloud Data Warehouse

Unstructured Data and Data Warehousing: The Next Frontier

- Unstructured data analytics generally requires ML tools, separate from data warehouses
- Bridging this gap requires infra, specialized teams and introduces security challenges
- This constraints unstructured data use cases that can be prioritized
- Our solution: <u>BigQuery management of</u> <u>unstructured data as a first-class citizen</u>



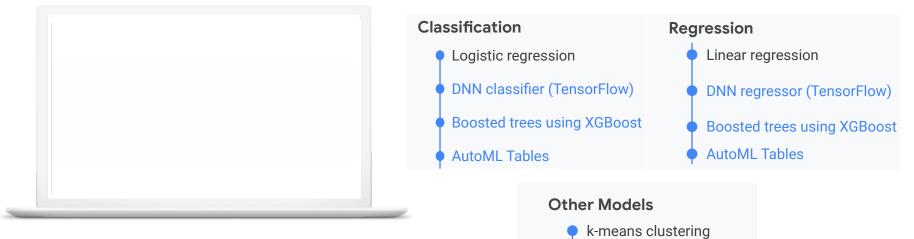
BigQuery Object Tables: Unstructured Data Management

- A SQL interface to object store metadata.
- BigQuery's window into the world of unstructured data
- Delegated access to files: Access to a row === access that file content.

CREATE EXTERNAL TABLE dataset1.images WITH CONNECTION 'us.biglake1' OPTIONS (uris=['gs://mybucket/*'], object_metadata='DIRECTORY')

	Ť						
uri	create_time	generation	•••				
bucket/image1.jpg	2021-11-04	2rba7gbp0					
bucket/image2.jpg	2021-11-05	gbp02rba7					
bucket/image3.jpg	2021-11-06	p02rbgbgb					

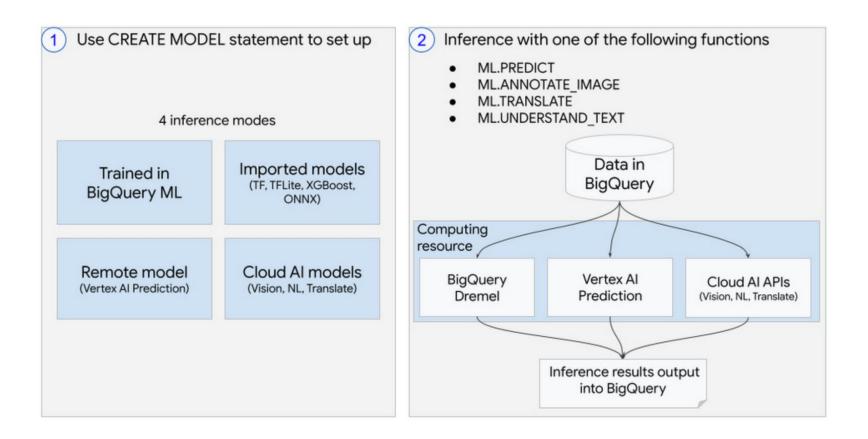
BigQuery ML: Native ML support in a data warehouse



Model Import/Export

 TensorFlow models for batch and online prediction

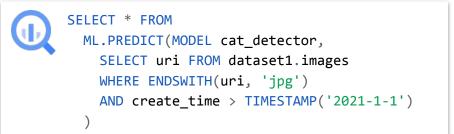
BigQuery ML Inference Engine



Object Tables and **BQML**

CREATE EXTERNAL TABLE dataset1.images WITH CONNECTION 'us.biglake1' OPTIONS (uris=['gs://mybucket/*'], object_metadata='DIRECTORY')

uri	create_time	generation	
bucket/image1.jpg	2021-11-04	2rba7gbp0	
bucket/image2.jpg	2021-11-05	gbp02rba7	
bucket/image3.jpg	2021-11-06	p02rbgbgb	



In the query engine, we

- 1. Load images from object store
- 2. Preprocess them (decode, resize)
 - Execute TF inference in across
 BigQuery's query processing shards

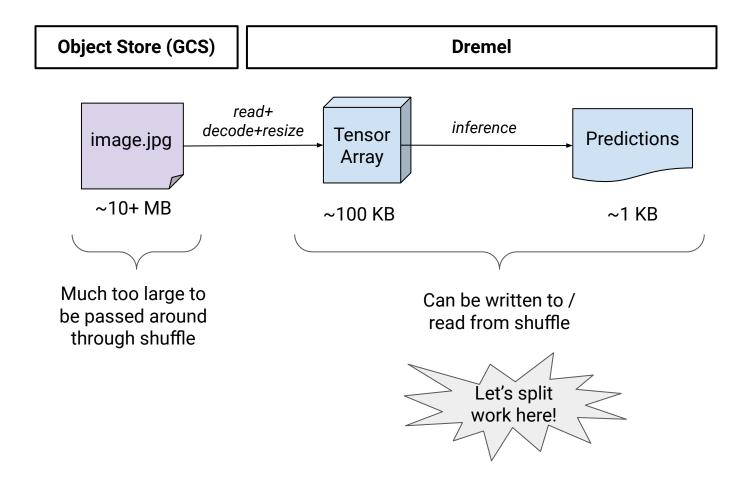
Processing Unstructured Data in Dremel

Challenges:

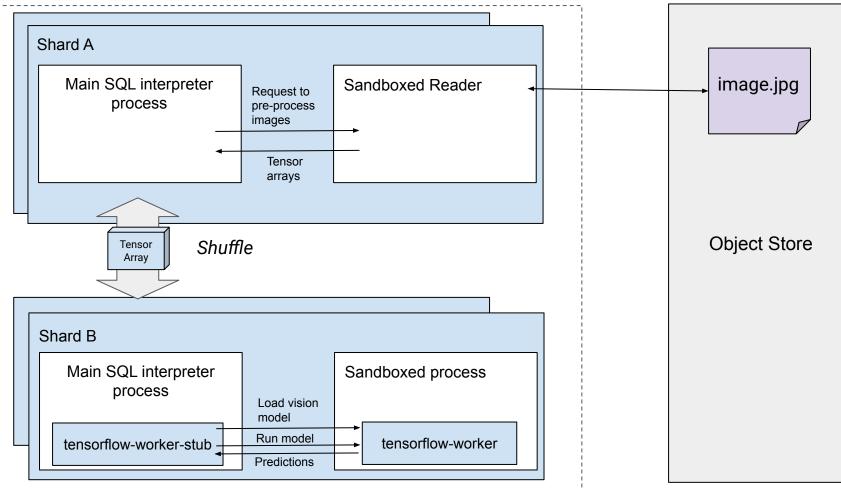
- Unstructured data and associated models typically larger than for structured data.
- Dremel scales only horizontally!
 - Dremel workers are tiny: 8GB of ram (less than your phone?)
- Dremel is serverless: clusters are shared across all users.
 - Scheduling fairly & efficiently is a huge challenge. Introducing special high-compute/memory workers would be a very difficult lift: Requires a complete rethink of scheduling.
 - \circ $\;$ $\;$ Shared resources like shuffle are scarce.

Our solution:

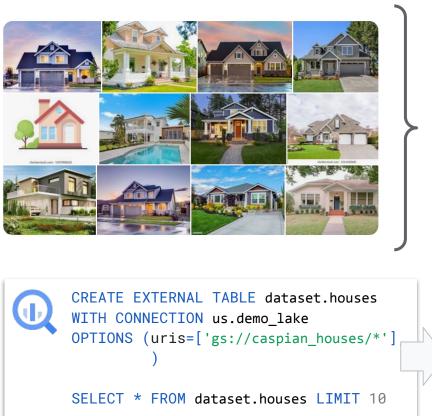
→ Lean on Dremel's strengths and decompose inference horizontally across workers.



Dremel



Example of Object Tables for Images



≡ (Googl	le Cloud 🔹 BQ Huron 👻 🔤	Q Search Proc	ducts, resou	rces, docs (/)				D 🕯 🖬 🔞
	÷	Bucket details						C REFRESH	E HELP ASSISTANT
•	cas	spian_houses							
á	Loca	ation Storag	e class Public :	access Pro	tection				
\$	us (r	multiple regions in United States) Stands	ard Not put	olic No	ne				
× .									
	OBJ	ECTS CONFIGURATION PER	RMISSIONS	PROTECTION	LIFECYCL	E			
	UP		REATE FOLDER	MANAGE HO	LDS DOWNL	DAD DELETE			Show deleted d
		Name	Size	Туре	Created 😧	Storage class	Last modified	Public access	Version history
		10_Downing_St.jpeg	143.4 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
		1242_Rose_St.jpeg	196.2 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
		1995_Ward_Ave.jpeg	63 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
		1_Washington_Ave.jpeg	109.6 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
\$		2034_Cedar_St.jpeg	26.8 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
Ē		666_Newell_St.jpeg	170.8 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
_		823_University_Ave.jpeg	76.6 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public	-
Þ		892_Fulton_Rd.jpeg	60.6 KB	image/jpeg	Aug 4, 20	Standard	Aug 4, 202	Not public Perfor	_ N
		uri			+ l gi	eneration	+ co	ntent_typ	pe size
as:	//co	aspian_houses/10_Dowr	nina St.ir		1659	 659941032	+ 822 im	age/jpeg	+
0		ispian_houses/1242_Rc	0 51	0		659941932		age/jpeg	1 200905
0		aspian_houses/1995_Wa		0		659942122		age/jpeg	64551
)		ispian_houses/1_Washi)		659940828		age/jpeg	112249
		aspian_houses/2034_Ce		5. 0		659942231		age/jpeg	1 27476
0		aspian_houses/666_New	- 51	0	1659	659941129		age/jpeg	174938
0		aspian_houses/823_Uni		0	a 1659	659941526		age/jpeg	1 78473
gs.	// 00								

Google Cloud

Customer Use Case: Adswerve and Twiddy & Co

"As a local family vacation rental business specializing in delivering hospitality for nearly 45 years, we've always <u>strived for our vacation home images to</u> <u>convey the unique local experience</u> that our homes offer. BigQuery ML made it really easy for our business analysts to <u>find just the right images by analyzing</u> <u>thousands of potential options and combining them with existing click-through</u> <u>data.</u> This, otherwise, would have taken a lot longer or simply we wouldn't have done it at all."

- Shelley Tolbert, Director of Marketing, Twiddy & Company

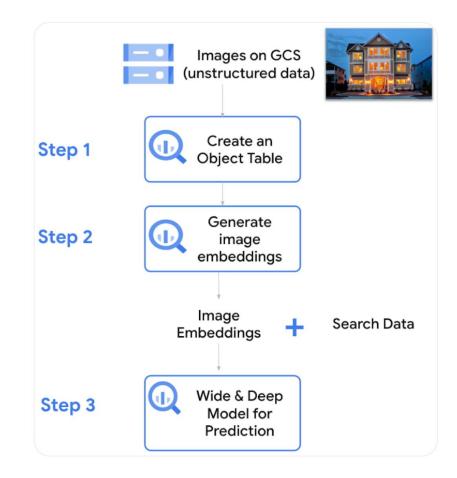
Customer Use Case: Adswerve and Twiddy & Co

• **Goal:** build ML models using both website search data and rental listing images to predict the click-through rate of the rental properties.

• Challenges

- Previously only relied on structured data (e.g. location, size) to predict what customers might like
- The editorial team uses a manual photo selection process
- Require data science resources to build machine learning pipelines and processing data to resize images is *labor intensive*

Adswerve and Twiddy & Co: 3 Steps to Success



Adswerve and Twiddy & Co: object table creation

```
CREATE OR REPLACE EXTERNAL TABLE
`images.property_images`
WITH CONNECTION
`us.datalake`
OPTIONS(uris=["gs://demo/images/*"]
        object_metadata="DIRECTORY",
        max_staleness=INTERVAL 30 MINUTE,
        metadata_cache_mode="AUTOMATIC");
```

uri	content_type	size
gs://as-bqml-launch-demo/images/ER010-aerialrearext.jpg	image/jpeg	1940969
gs://as-bqml-launch-demo/images/KD1111-rearext.jpg	image/jpeg	1508587
gs://as-bqml-launch-demo/images/ER011-aerialrearext.jpg	image/jpeg	1949278
gs://as-bqml-launch-demo/images/B800-rearext.jpg	image/jpeg	338409
gs://as-bqml-launch-demo/images/b372-rearext.jpg	image/jpeg	1841978
gs://as-bgml-launch-demo/images/J10975-aerial-2.jpg	image/jpeg	1606464

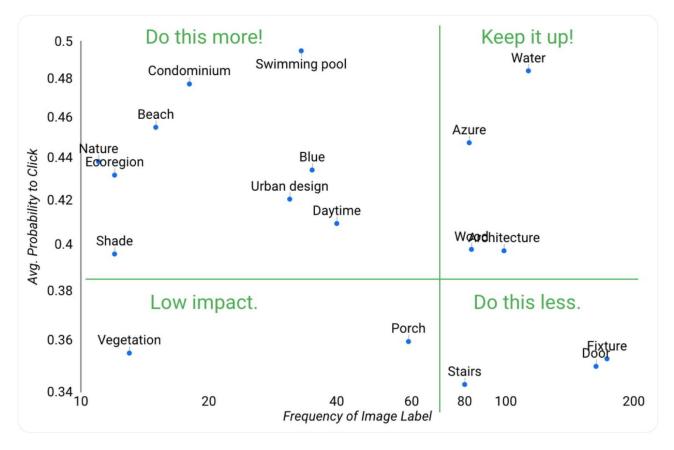
Adswerve and Twiddy & Co: image embedding generation

```
CREATE OR REPLACE MODEL
    `pipeline.resnet_embeddings`
OPTIONS(model_type="TENSORFLOW",
        model_path="gs://resnet-embeddings/*")
```

```
SELECT *
FROM ML.PREDICT(
    MODEL `pipeline.resnet_embeddings`,
    (SELECT ML.DECODE_IMAGE(data)
    FROM `images.property_images`)
);
```

img_name	pc1	pc2	pc3
EC1-Bar.jpg	1.8493	1.3984	1.9969
EC1-ext.jpg	-18.16	-8.0527	1.3630
EC1-Bar2.jpg	-1.382	-0.5212	-3.135
EC1-Bar3.jpg	3.8091	-5.0284	2.1694
ec1-pool.jpg	-4.891	7.1742	-5.182

Adswerve and Twiddy & Co: train model and predict listing clickthrough rate, all in SQL!



Google Cloud

BigSearch on unstructured data inferences

- Build search indexes on metadata generated from inference. Such as text from PDF docs, objects and entities from images or videos, or speech transcription
- 2. Run 'needle in the haystack' queries for search use cases. Tightly integrated with native JSON, allowing you to get BigQuery performance and storage optimizations on JSON
- 3. Get signed URLs for search results to retrieve objects from GCS. Use it in ad hoc queries or BI reports

CREATE SEARCH INDEX my_index ON
pdf_text_extract(ALL COLUMNS);

SELECT * FROM pdf_text_extract WHERE
SEARCH(pdf_text, "Google");

Secure and govern cloud storage using row-level security

- 1. Rows in Object tables map to objects on Google Cloud Storage
- 2. Users will be able to access signed URLs only for the objects for which you grant them row level access in Object table

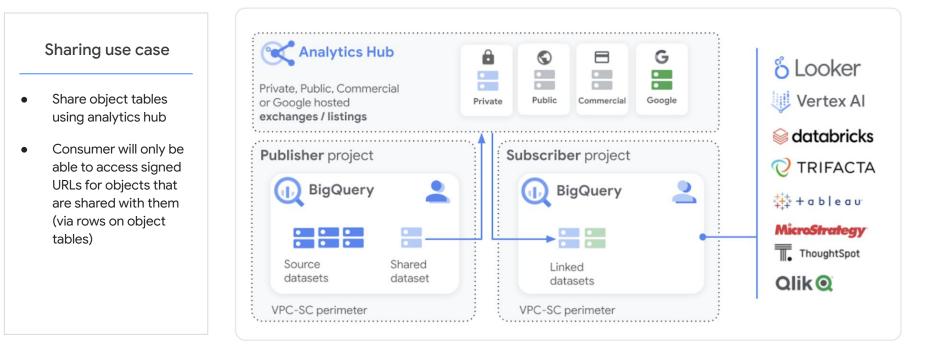
CREATE ROW ACCESS POLICY pii_data ON
object_table_images

```
GRANT TO ("group:admin@example.com")
FILTER USING (
```

metadata[OFFSET(0)].name="face_detected")

 Specify these fine-grained access policies using object metadata (e.g., <u>from structured inference</u>) for use cases such PII management.

Share unstructured + governed data sets



Open Challenges / Directions

• Systems-level challenges

- Scaling inference within a relational query processing engine
 - Reuse HPC techniques to minimize communication overhead?
- Heterogeneous query processing
 - Generalized planning combining, e.g., tensor operators and traditional relational algebra
- Mix and match of hardware profiles under one roof?
 - "Push up" operators in a query plan

• Usability / experience challenges

- Asynchrony in SQL
- SQL is great, but is it the only interface? (Barbara's talk on Tuesday)
- Will we build verticals? Or are there common abstractions?

Questions

Google Cloud