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Dremel: BigQuery’s Query Processing Engine
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● Disaggregation of compute, storage, memory / shuffle
○ On-demand scaling of each resource

○ On-demand sharing of resources

○ Adapts well to multi-tenant usage at lower cost

● Architecture advantages
○ Separation of concerns across “components” or “micro-services”

○ Re-use / evolve components as needed without large “blast radius” 

“Serverless” Design Principles and Advantages



BigQuery High Performance Read/Write APIs
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BigLake and Omni
Extending BigQuery’s Reach





Toward the “Lakehouse”

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html


Toward a “Lakehouse”
● Lakehouse features

○ Support for diverse workloads and analytics engines
○ Diverse data types spanning structure, semi-structured, and unstructured
○ Support for open formats on object storage – with object storage as the “hub”
○ Common governance support 
○ Support for streaming / ACID transactions

● A coupling of systems bound together by common data management principles
○ Choice in data analytics engine usage, storage format and deployment in how they build stacks
○ Single story for core data management issues in analytics (the difficult stuff): governance, performance, 

consistency/transactions, etc.

UI / UX

Proprietary

Storage Abstraction

Metadata

Open Source AI/ML Customer
(Cloud Functions)

Proprietary GCS
Cross Cloud 

Object Stores. . .

Analytics Runtimes



Storage APIs (Read/Write)
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BigQuery Architecture: Separation of Compute and Storage 
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Storage APIs (Read/Write)

BQ Read-Optimized 
Storage (Colossus)

Capacitor

Superluminal Vectorized Runtime (Fast scans, user predicates and security filter evaluation)

Vortex/DML/Streaming
Write-Optimized 

Storage

BigQuery Architecture with BigQuery Storage API for OSS Engines
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BigLake - Expanding BigQuery Capabilities to GCS and other Object Stores

● Vectorized runtime with columnar 
scanners efficiently evaluate user 
predicates

● Data served in Apache Arrow format 
with security enforced prior to egress

● Vortex stream ingest for efficient 
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● Materialized views on BQ and 
BigLake tables served through API
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APIs for ingress



BigLake: Materialized Views / ELT 
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BigQuery Omni: Extending BigQuery to AWS and Azure
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Unstructured Data
In a Cloud Data Warehouse
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Unstructured Data and Data Warehousing: The Next Frontier

● Unstructured data analytics generally requires ML 
tools, separate from data warehouses

● Bridging this gap requires infra, specialized teams 
and introduces security challenges

● This constraints unstructured data use cases that 
can be prioritized

● Our solution: BigQuery management of 
unstructured data as a first-class citizen



BigQuery Object Tables: Unstructured Data Management

CREATE EXTERNAL TABLE dataset1.images 
WITH CONNECTION 'us.biglake1'
OPTIONS (uris=['gs://mybucket/*'],  
         object_metadata='DIRECTORY')

uri create_time generation …

bucket/image1.jpg 2021-11-04 2rba7gbp0

bucket/image2.jpg 2021-11-05 gbp02rba7

bucket/image3.jpg 2021-11-06 p02rbgbgb

● A SQL interface to object store 
metadata.

● BigQuery’s window into the world 
of unstructured data

● Delegated access to files: 
Access to a row === access that 
file content.



BigQuery ML: Native ML support in a data warehouse

Classification
Logistic regression

DNN classifier (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Regression
Linear regression

DNN regressor (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Other Models
k-means clustering

Time series forecasting

Recommendation: 
Matrix factorization 

Model Import/Export
TensorFlow models for 
batch and online 
prediction 



BigQuery ML Inference Engine



Object Tables and BQML

SELECT * FROM

  ML.PREDICT(MODEL cat_detector, 

    SELECT uri FROM dataset1.images

    WHERE ENDSWITH(uri, 'jpg') 

    AND create_time > TIMESTAMP('2021-1-1')

  )

CREATE EXTERNAL TABLE dataset1.images 
WITH CONNECTION 'us.biglake1'
OPTIONS (uris=['gs://mybucket/*'],  
         object_metadata='DIRECTORY')

uri create_time generation …

bucket/image1.jpg 2021-11-04 2rba7gbp0

bucket/image2.jpg 2021-11-05 gbp02rba7

bucket/image3.jpg 2021-11-06 p02rbgbgb

In the query engine, we
1. Load images from object store
2. Preprocess them (decode, resize)
3. Execute TF inference in across 

BigQuery’s query processing shards



Processing Unstructured Data in Dremel

Challenges:

● Unstructured data and associated models typically larger than for structured data.

● Dremel scales only horizontally! 
○ Dremel workers are tiny: 8GB of ram (less than your phone?)

● Dremel is serverless: clusters are shared across all users. 
○ Scheduling fairly & efficiently is a huge challenge. Introducing special high-compute/memory workers 

would be a very difficult lift: Requires a complete rethink of scheduling.
○ Shared resources like shuffle are scarce.

Our solution:

➔ Lean on Dremel’s strengths and decompose inference horizontally across workers.
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Proprietary + Confidential

Object table

CREATE EXTERNAL TABLE dataset.houses 
WITH CONNECTION us.demo_lake
OPTIONS (uris=['gs://caspian_houses/*'],     
         )

SELECT * FROM dataset.houses LIMIT 10

Example of Object Tables for Images



Proprietary + ConfidentialCustomer Use Case: Adswerve and Twiddy & Co

"As a local family vacation rental business specializing in delivering hospitality 
for nearly 45 years, we've always strived for our vacation home images to 
convey the unique local experience that our homes offer. BigQuery ML made it 
really easy for our business analysts to find just the right images by analyzing 
thousands of potential options and combining them with existing click-through 
data. This, otherwise, would have taken a lot longer or simply we wouldn't have 
done it at all." 

— Shelley Tolbert, Director of Marketing, Twiddy & Company



Proprietary + ConfidentialCustomer Use Case: Adswerve and Twiddy & Co

● Goal: build ML models using both website search data and 

rental listing images to predict the click-through rate of the 

rental properties.

● Challenges
○ Previously only relied on structured data (e.g. location, size) to predict what 

customers might like
○ The editorial team uses a manual photo selection process
○ Require data science resources to build machine learning pipelines and processing 

data to resize images is labor intensive 



Proprietary + ConfidentialAdswerve and Twiddy & Co: 3 Steps to Success



Proprietary + ConfidentialAdswerve and Twiddy & Co: object table creation



Proprietary + ConfidentialAdswerve and Twiddy & Co: image embedding generation



Proprietary + ConfidentialAdswerve and Twiddy & Co:
train model and predict listing clickthrough rate, all in SQL!



Proprietary + Confidential
BigSearch on unstructured data inferences

1. Build search indexes on metadata generated from 
inference. Such as text from PDF docs, objects and 
entities from images or videos, or speech 
transcription

2. Run ‘needle in the haystack’ queries for search use 
cases. Tightly integrated with native JSON, 
allowing you to get BigQuery performance and 
storage optimizations on JSON 

3. Get signed URLs for search results to retrieve 
objects from GCS. Use it in ad hoc queries or BI 
reports

CREATE SEARCH INDEX my_index ON 
pdf_text_extract(ALL COLUMNS);

SELECT * FROM pdf_text_extract WHERE 
SEARCH(pdf_text, "Google");



Proprietary + ConfidentialSecure and govern cloud storage using row-level security 

1. Rows in Object tables map to objects on Google 
Cloud Storage

2. Users will be able to access signed URLs only for 
the objects for which you grant them row level 
access in Object table

3. Specify these fine-grained access policies using 
object metadata (e.g., from structured inference) 
for use cases such PII management. 

CREATE ROW ACCESS POLICY pii_data ON 
object_table_images

GRANT TO ("group:admin@example.com") 
FILTER USING (
              
metadata[OFFSET(0)].name="face_detected")



Proprietary + ConfidentialShare unstructured + governed data sets 

Sharing use case

● Share object tables 
using analytics hub

● Consumer will only be 
able to access signed 
URLs for objects that 
are shared with them 
(via rows on object 
tables)



Proprietary + ConfidentialOpen Challenges / Directions

● Systems-level challenges
○ Scaling inference within a relational query processing engine

■ Reuse HPC techniques to minimize communication overhead?

○ Heterogeneous query processing
■ Generalized planning combining, e.g., tensor operators and traditional relational algebra

○ Mix and match of hardware profiles under one roof?
■ “Push up” operators in a query plan

● Usability / experience challenges
○ Asynchrony in SQL
○ SQL is great, but is it the only interface? (Barbara’s talk on Tuesday)
○ Will we build verticals? Or are there common abstractions?



Proprietary + Confidential

Questions


