
Integrating Unstructured Data
Into a Cloud Data Warehouse

Justin Levandoski | UC Berkeley EPIC Lab Offsite

BigQuery Architecture

SQL:2011
Compliant

Petabit Network

BigQuery High-Available Cluster
ComputeStreaming

Ingest and
Read

Bulk
 Load and

Export

Replicated, Distributed
Storage

REST API

Client
Libraries

In 7
languages

Web UI, CLIDistributed
Memory Shuffle

Tier

Dremel: BigQuery’s Query Processing Engine

Distributed
File System

In-memory
Shuffle

In-memory
Shuffle

Distributed
File System

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Coordinator Scheduler

stage 1
stage 2

stage 3

● Disaggregation of compute, storage, memory / shuffle
○ On-demand scaling of each resource

○ On-demand sharing of resources

○ Adapts well to multi-tenant usage at lower cost

● Architecture advantages
○ Separation of concerns across “components” or “micro-services”

○ Re-use / evolve components as needed without large “blast radius”

“Serverless” Design Principles and Advantages

BigQuery High Performance Read/Write APIs

BQ Read-Optimized
Storage (Colossus)

Columnar
Data Files

Superluminal Vectorized Runtime (Fast scans, user predicates and security filter evaluation)

Vortex/DML/Streaming
Write-Optimized

Storage

BigQuery Storage Read/Write APIs

Table Definitions

File Metadata

Streams

Statistics

Metadata

BQ / Dremel

● Vectorized runtime with columnar scanners efficiently evaluate user row-level security predicates
● Data served in Apache Arrow format with security enforced prior to egress
● Vortex stream ingest for efficient streaming and (eventually) DML
● Materialized views on BQ and BigLake tables served through API
● Compatibility with major data lake managed table APIs: Databricks Delta Lake and Apache Iceberg
● Customer flexibility in usage modes, e.g., GCS APIs for ingress

Security Policies

Distributed
Memory Shuffle

Tier

BigLake and Omni
Extending BigQuery’s Reach

Toward the “Lakehouse”

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

Toward a “Lakehouse”
● Lakehouse features

○ Support for diverse workloads and analytics engines
○ Diverse data types spanning structure, semi-structured, and unstructured
○ Support for open formats on object storage – with object storage as the “hub”
○ Common governance support
○ Support for streaming / ACID transactions

● A coupling of systems bound together by common data management principles
○ Choice in data analytics engine usage, storage format and deployment in how they build stacks
○ Single story for core data management issues in analytics (the difficult stuff): governance, performance,

consistency/transactions, etc.

UI / UX

Proprietary

Storage Abstraction

Metadata

Open Source AI/ML Customer
(Cloud Functions)

Proprietary GCS
Cross Cloud

Object Stores. . .

Analytics Runtimes

Storage APIs (Read/Write)

BQ Read-Optimized
Storage (Colossus)

Capacitor

Superluminal Vectorized Runtime (Fast scans, user predicates and security filter evaluation)

Vortex/DML/Streaming
Write-Optimized

Storage

BigQuery Architecture: Separation of Compute and Storage

Table Definitions

File Metadata

Streams

Statistics

Metadata

BQ / Dremel

● Vectorized runtime with columnar scanners efficiently evaluate user row-level security predicates
● Data served in Apache Arrow format with security enforced prior to egress
● Vortex stream ingest for efficient streaming and (eventually) DML
● Materialized views on BQ and BigLake tables served through API
● Compatibility with major data lake managed table APIs: Databricks Delta Lake and Apache Iceberg
● Customer flexibility in usage modes, e.g., GCS APIs for ingress

Security Policies

Distributed
Memory Shuffle

Tier

Storage APIs (Read/Write)

BQ Read-Optimized
Storage (Colossus)

Capacitor

Superluminal Vectorized Runtime (Fast scans, user predicates and security filter evaluation)

Vortex/DML/Streaming
Write-Optimized

Storage

BigQuery Architecture with BigQuery Storage API for OSS Engines

Table Definitions

File Metadata

Streams

Statistics

Metadata

BQ / Dremel

● Vectorized runtime with columnar scanners efficiently evaluate user row-level security predicates
● Data served in Apache Arrow format with security enforced prior to egress
● Vortex stream ingest for efficient streaming and (eventually) DML
● Materialized views on BQ and BigLake tables served through API
● Compatibility with major data lake managed table APIs: Databricks Delta Lake and Apache Iceberg
● Customer flexibility in usage modes, e.g., GCS APIs for ingress

Security Policies

Memory
Shuffle

Tier

BigLake - Expanding BigQuery Capabilities to GCS and other Object Stores

● Vectorized runtime with columnar
scanners efficiently evaluate user
predicates

● Data served in Apache Arrow format
with security enforced prior to egress

● Vortex stream ingest for efficient
streaming and (eventually) DML

● Materialized views on BQ and
BigLake tables served through API

● Compatibility with major data lake
managed table APIs: Databricks
Delta Lake and Apache Iceberg

● Flexibility in usage modes, e.g., GCS
APIs for ingress

BigLake: Materialized Views / ELT

GCS

JSON1 JSON2

BigQuery / BigLake Storage APIs
1

Kafka pipelines producing
lake files on GCS; Kafka service
has privileged write permission
to GCS bucket.

Metadata

Table Def

MV Def
2

BQ detects changes to GCS
bucket and produces change
stream to update materialized
view incrementally.

4
Automatic MV maintenance
covers a (major) subset of
ELT/ETL transformations

CREATE MATERIALIZED VIEW biglake_mv
AS “SELECT COL1 SUM(COL2)
 FROM biglake_table
 GROUP BY COL1”;

GCS APIs

…

JSON_new

Incremental
Materialized View

Maintenance
Materlialized View

(biglake_mv)

Dremel

3
Materialized
view in BigQuery
and served
through BigLake
APIs

…

BigQuery Omni: Extending BigQuery to AWS and Azure

Querying a Multi-Cloud Lakehouse

Amazon S3
storage

Azure Data Lake
Storage

BigQuery Managed
Storage

Google Cloud
Storage

Unstructured Data
In a Cloud Data Warehouse

Metadata
Security

Transactions

ML Packages,
libraries, ML
infra, models

AI/ML ToolsData Warehouses

Structured and
semi-structured

data

Unstructured
data

Unstructured Data and Data Warehousing: The Next Frontier

● Unstructured data analytics generally requires ML
tools, separate from data warehouses

● Bridging this gap requires infra, specialized teams
and introduces security challenges

● This constraints unstructured data use cases that
can be prioritized

● Our solution: BigQuery management of
unstructured data as a first-class citizen

BigQuery Object Tables: Unstructured Data Management

CREATE EXTERNAL TABLE dataset1.images
WITH CONNECTION 'us.biglake1'
OPTIONS (uris=['gs://mybucket/*'],
 object_metadata='DIRECTORY')

uri create_time generation …

bucket/image1.jpg 2021-11-04 2rba7gbp0

bucket/image2.jpg 2021-11-05 gbp02rba7

bucket/image3.jpg 2021-11-06 p02rbgbgb

● A SQL interface to object store
metadata.

● BigQuery’s window into the world
of unstructured data

● Delegated access to files:
Access to a row === access that
file content.

BigQuery ML: Native ML support in a data warehouse

Classification
Logistic regression

DNN classifier (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Regression
Linear regression

DNN regressor (TensorFlow)

Boosted trees using XGBoost

AutoML Tables

Other Models
k-means clustering

Time series forecasting

Recommendation:
Matrix factorization

Model Import/Export
TensorFlow models for
batch and online
prediction

BigQuery ML Inference Engine

Object Tables and BQML

SELECT * FROM

 ML.PREDICT(MODEL cat_detector,

 SELECT uri FROM dataset1.images

 WHERE ENDSWITH(uri, 'jpg')

 AND create_time > TIMESTAMP('2021-1-1')

)

CREATE EXTERNAL TABLE dataset1.images
WITH CONNECTION 'us.biglake1'
OPTIONS (uris=['gs://mybucket/*'],
 object_metadata='DIRECTORY')

uri create_time generation …

bucket/image1.jpg 2021-11-04 2rba7gbp0

bucket/image2.jpg 2021-11-05 gbp02rba7

bucket/image3.jpg 2021-11-06 p02rbgbgb

In the query engine, we
1. Load images from object store
2. Preprocess them (decode, resize)
3. Execute TF inference in across

BigQuery’s query processing shards

Processing Unstructured Data in Dremel

Challenges:

● Unstructured data and associated models typically larger than for structured data.

● Dremel scales only horizontally!
○ Dremel workers are tiny: 8GB of ram (less than your phone?)

● Dremel is serverless: clusters are shared across all users.
○ Scheduling fairly & efficiently is a huge challenge. Introducing special high-compute/memory workers

would be a very difficult lift: Requires a complete rethink of scheduling.
○ Shared resources like shuffle are scarce.

Our solution:

➔ Lean on Dremel’s strengths and decompose inference horizontally across workers.

image.jpg Tensor
Array

Predictions

~10+ MB ~100 KB ~1 KB

Object Store (GCS) Dremel

read+
decode+resize inference

Much too large to
be passed around

through shuffle

Can be written to /
read from shuffle

Let’s split
work here!

Shard A

Main SQL interpreter
process

Sandboxed ReaderRequest to
pre-process
images

Tensor
arrays

Shard BShard B

tensorflow-worker-stub

Sandboxed process

tensorflow-worker

Load vision
model

Predictions

Run model

Object Store

Main SQL interpreter
process

image.jpg

Tensor
Array

Shuffle

Dremel

Proprietary + Confidential

Object table

CREATE EXTERNAL TABLE dataset.houses
WITH CONNECTION us.demo_lake
OPTIONS (uris=['gs://caspian_houses/*'],
)

SELECT * FROM dataset.houses LIMIT 10

Example of Object Tables for Images

Proprietary + ConfidentialCustomer Use Case: Adswerve and Twiddy & Co

"As a local family vacation rental business specializing in delivering hospitality
for nearly 45 years, we've always strived for our vacation home images to
convey the unique local experience that our homes offer. BigQuery ML made it
really easy for our business analysts to find just the right images by analyzing
thousands of potential options and combining them with existing click-through
data. This, otherwise, would have taken a lot longer or simply we wouldn't have
done it at all."

— Shelley Tolbert, Director of Marketing, Twiddy & Company

Proprietary + ConfidentialCustomer Use Case: Adswerve and Twiddy & Co

● Goal: build ML models using both website search data and

rental listing images to predict the click-through rate of the

rental properties.

● Challenges
○ Previously only relied on structured data (e.g. location, size) to predict what

customers might like
○ The editorial team uses a manual photo selection process
○ Require data science resources to build machine learning pipelines and processing

data to resize images is labor intensive

Proprietary + ConfidentialAdswerve and Twiddy & Co: 3 Steps to Success

Proprietary + ConfidentialAdswerve and Twiddy & Co: object table creation

Proprietary + ConfidentialAdswerve and Twiddy & Co: image embedding generation

Proprietary + ConfidentialAdswerve and Twiddy & Co:
train model and predict listing clickthrough rate, all in SQL!

Proprietary + Confidential
BigSearch on unstructured data inferences

1. Build search indexes on metadata generated from
inference. Such as text from PDF docs, objects and
entities from images or videos, or speech
transcription

2. Run ‘needle in the haystack’ queries for search use
cases. Tightly integrated with native JSON,
allowing you to get BigQuery performance and
storage optimizations on JSON

3. Get signed URLs for search results to retrieve
objects from GCS. Use it in ad hoc queries or BI
reports

CREATE SEARCH INDEX my_index ON
pdf_text_extract(ALL COLUMNS);

SELECT * FROM pdf_text_extract WHERE
SEARCH(pdf_text, "Google");

Proprietary + ConfidentialSecure and govern cloud storage using row-level security

1. Rows in Object tables map to objects on Google
Cloud Storage

2. Users will be able to access signed URLs only for
the objects for which you grant them row level
access in Object table

3. Specify these fine-grained access policies using
object metadata (e.g., from structured inference)
for use cases such PII management.

CREATE ROW ACCESS POLICY pii_data ON
object_table_images

GRANT TO ("group:admin@example.com")
FILTER USING (

metadata[OFFSET(0)].name="face_detected")

Proprietary + ConfidentialShare unstructured + governed data sets

Sharing use case

● Share object tables
using analytics hub

● Consumer will only be
able to access signed
URLs for objects that
are shared with them
(via rows on object
tables)

Proprietary + ConfidentialOpen Challenges / Directions

● Systems-level challenges
○ Scaling inference within a relational query processing engine

■ Reuse HPC techniques to minimize communication overhead?

○ Heterogeneous query processing
■ Generalized planning combining, e.g., tensor operators and traditional relational algebra

○ Mix and match of hardware profiles under one roof?
■ “Push up” operators in a query plan

● Usability / experience challenges
○ Asynchrony in SQL
○ SQL is great, but is it the only interface? (Barbara’s talk on Tuesday)
○ Will we build verticals? Or are there common abstractions?

Proprietary + Confidential

Questions

