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AUTOMATIC DATA REPAIR FOR ML PIPELINES

PARTH ASAWA, SHREYA SHANKAR, PROFESSOR ADITYA G. PARAMESWARAN

Developing a low-latency, scalable solution using LLMs to automatically perform data repair on tabular data.

Background

0 Problem

0 Data is often dirty in tabular ML pipelines due to:
Distribution shift
Corruptions in data ingestion
Violating basic constraints
Suffering from a software bug

O There’s a lot of manual work that ML engineers
take on to enumerate different constraints or
heuristics for data cleaning in existing pipelines and
this doesn’t always result in improved
performance.

0 Goal

0 How do we match that performance or exceed it
with minimal human intervention?

O -> Evaluate the utility of LLMs as a method to
present an automated and inexpensive solution for

enabling tabular data repair in the best way
possible.
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0 Key Takeaways for Good Performance

0 Scalability Constraints: Many systems
contain a human-in-the-loop component and
are designed with an “on-call engineer” in
mind.

0 Reliance on external knowledge bases.

0 Minimality in data repair: less edits is
preferable.

0 Partitions: ML pipelines experience a
continuous inflow of data. Creating partitions
of data and evaluating partitions over time
can be more robust.

0 Temporal robustness: datasets often
contain temporal patterns whether by
seasons, weeks, days, etc. that data repair
algorithms can falsely try to correct.

LLMs x Tabular Data

0 Key benefits (Narayan et al., 2022):
0 Task-agnostic architecture
0 Encoded knowledge
0 Limited to no labeled data required

0 Applying LLMs to Data Tasks consists of 3 main
steps:
0 Tabular Data Serialization: adapting structured
data inputs to textual inputs.

0 Converting Data Cleaning/Integration Tasks
to Natural Language Tasks.

0 Task Demonstrations: constructing optimal
demonstrative task examples to help the FM
learn new data tasks (or fine tuning).

O Limitations

O Different prompts lead to high variance in
performance for different tasks.

O Lack of domain specificity.
0 Cost and privacy.

LLMs x Data Cleaning Architecture

0 We propose a high level architecture that follows
these key principles to applying LLMs to Data
Tasks to solve a general data cleaning problem
for a nonspecific dataset.
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Research Directions

O Prompts

0 Effective and Smaller Prompts: Provide more
iInformation than just the column types when
It comes to metadata, e.g. leverage column
names, partition summaries, etc.

0 Task Demonstration Selection
0 Context of few-shot learning

0 Determine systematic ways to select small
samples of data cleaning task examples that
should be passed into an LLM in the prompt
as context (ex. KNN).

0 Chain of Thought Reasoning

0 Using an LLM directly isn’t always the best
way to data clean, when there is for example
a complex FD.

0 -2 Prompt LLMs to determine which method
of data imputation would be best for a
particular dataset. Use the resulting answer
to generate relevant repair code or directly
impute the value with an agent.

Other Considerations

0 Cost: we seek to explore the cheapest and most
democratizable ways LLMs can be leveraged.

0 Privacy: open source models that can be locally
hosted pose a lower risk to privacy than that of
large models only accessible through API calls.

0 Time: we hope to reduce the time required in the
overall data cleaning process.
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