A Need-Finding Study with Users of Geospatial Data **CHI23**

Parker Ziegler

Sarah E. Chasins

EPIC Data Lab Retreat • April 17, 2023

Topography of Mt. Tamalpais, Marin County, USA

Check out the CHI'23 paper

Ok, but hold up, Parker. What is geospatial data? (And why study how domain experts work with it?)

Background Geospatial Data

Earth's surface.

Geospatial data describes the location and attributes of phenomena on the

Background Geospatial Data

👈 🛛 💽 A Need-Finding Study with User × 🛛 +

attributes

PERCENT_RENTER_OCC	RENTER_OCCUPIE integer -	OCCUPIED_U integer	NAME string	GEO_ID string	>
25.377	5,471	21,559	Autauga County, Ala	0500000US01001	0
23	19,331	84,047	Baldwin County, Ala	0500000US01003	1
38.05	3,547	9,322	Barbour County, Ala	0500000US01005	2
25.224	1,831	7,259	Bibb County, Alabama	0500000US01007	3
23.924	5,073	21,205	Blount County, Alab	0500000US01009	4
26.188	898	3,429	Bullock County, Alab	0500000US01011	5
26.726	1,777	6,649	Butler County, Alaba	0500000US01013	6
29.619	13,202	44,572	Calhoun County, Ala	0500000US01015	7
32.757	4,449	13,582	Chambers County, A	0500000US01017	8
21.77	2,359	10,836	Cherokee County, Al	0500000US01019	9
24.866	4,262	17,140	Chilton County, Alab	0500000US01021	0
18.386	980	5,330	Choctaw County, Ala	0500000US01023	11
27.48	2,562	9,323	Clarke County, Alaba	0500000US01025	2
23.404	1,206	5,153	Clay County, Alabama	0500000US01027	3
22.622	1,320	5,835	Cleburne County, Al	0500000US01029	4
32.199	6,424	19,951	Coffee County, Alab	0500000US01031	5
28.389	6,188	21,797	Colbert County, Alab	0500000US01033	6
25.278	1,159	4,585	Conecuh County, Al	0500000US01035	7
18.924	760	4,016	Coosa County, Alaba	0500000US01037	8
25.729	3,858	14,995	Covington County, A	0500000US01039	9
23.329	1,169	5,011	Crenshaw County, Al	0500000US01041	20
25.207	7,999	31,733	Cullman County, Ala	050000US01043	21
41.355	8,025	19,405	Dale County, Alabama	0500000US01045	22
43.338	6,678	15,409	Dallas County, Alaba	0500000US01047	23
26.892	7,090	26,365	DeKalb County, Alab	0500000US01049	24
24.817	7,394	29,794	Elmore County, Alab	0500000US01051	25
33.547	4,338	12,931	Escambia County, Al	0500000US01053	26

location

Background Geospatial Data

Geospatial data is everywhere today.

Satellite Imagery

Environmental Sensor Networks

OpenStreetMap

Domain Experts and Geospatial Data

Earth and Climate Science

Data Journalism

Domain Experts and Geospatial Data

Earth and Climate Science

Social Sciences

Data Journalism

← → C O A https:// Department of Geography Franklin College of Arts and Science UNIVERSITY OF GEORGIA

单 🏾 🍨 CyanoKhoj-India

CyanoKhoj | India

This dashboard is designed for quick analysis of CyanoHABs and Water Quality Assessment using Sentinel-3 imagery for select Indian waterbodies.

1) Select Waterbod

•••

Ukai_Dam_Gujarat 🌲

2) Select Cloud Mask And Non-Water Area Flag

✓ Mask Cloud Cover and Non-Water Are
 2018-09-01
 2018-09-30

✓ Filter Map to center
Apply Filter

3) Select an image (dated)

S3A_20180918T045719_20180918T050019 ≑

4) Select Visualisation

Cyanobacteria_Cell_Density 🌲

CCD Map from Chl-a absorption and phycocyanin absorption

Domain Experts and Geospatial Data

Earth and **Climate Science**

Social Sciences

Data Journalism

🛑 🛑 🛑 🐞 🥌 CyanoKhoj-India

CyanoKhoj | India

This dashboard is designed for quick analysis of CyanoHABs and Water Quality Assessment using Sentinel-3 imagery for select Indian waterbodies.

1) Select Waterbody

Ukai_Dam_Gujarat

2) Select Cloud Mask And Non-Water Area Flag Mask Cloud Cover and Non-Water Are

2018-09-01 2018-09-30

Filter Map to center

Apply Filter

3) Select an image (dated

S3A_20180918T045719_20180918T050019

4) Select Visualisatio

Cyanobacteria_Cell_Density 4

CCD Map from Chl-a absorption and phycocyanin

Barriers to working with geospatial data are high.

Barriers to working with geospatial data are high.

Example

Geographic Information Systems

• Require significant background in geospatial data theory

Cartography

Databases

Statistics

HCI research^{1, 2, 3} has shown that GISs are especially difficult for non-geographers to learn and use.

> 1. Traynor, C. and Williams, M.G. Why are geographic information systems hard to use? *Conference* Companion on Human Factors in Computing Systems (1995).

2. Traynor, C. & Williams, M. G. End users and GIS: a demonstration is worth a thousand words. in Your wish is my command: programming by example 115–134 (Morgan Kaufmann Publishers Inc., 2001). 3. Haklay, M. (Muki) & Skarlatidou, A. Human-Computer Interaction and Geospatial Technologies – Context. in Interacting with Geospatial Technologies 1–18 (John Wiley & Sons, Ltd, 2010). doi:10.1002/9780470689813.ch1.

Barriers to working with geospatial data are high.

•	east-bay-hea	(auto-J) - Jupyt∈×	+										
←	$ ightarrow {f G}$	🗘 🗋 localhost:88	888/lab/workspa	ices/auto-J/tree/east-bay-heat-	wave.ipynb		☆	⊗ ⊻	. 🔅 🚥	•		8 C) ≡
С	File Edit View Run	Kernel Tabs Setti	ings Help										
	+ 🗈 🛨	C	🖪 east-bay-	neat-wave.ipynb ×									°
	Filter files by name	Q	B + %	□ □ ► ■ C ►	Code 🗸					Ø Pythe	on 3 (ipyke	rnel) (0
0			[1]:	import geopandas as god									ŧ
	Namo A	Last Modified		<pre>import rasterio from rasterio plot import</pre>	chou								
≣	Name	2 hours ago		Trom rasterio.plot import	snow								
	acs-bgs-contra-cos	2 hours ago	[2]:	<pre>east_bay_hillshade = rast</pre>	erio.open("east-bay-hill	<pre>shade.tif")</pre>							
*	🗅 acs-bgs-marin.geojs	2 hours ago	[3]:	<pre>show(east_bay_hillshade,</pre>	<pre>cmap="gray")</pre>								
	🗅 acs-bgs-san-francis	2 hours ago		le6									
	• 🔲 east-bay-heat-wave	8 hours ago		4.20 -									
	east-bay-hillshade.tif	a day ago		410									4
	east-bay-srtm.tif	7 months ago		4.10	al and a second s								
	LC09_L2SP_044034	a day ago		4.16 -									
				4.14 -									
					A								
				4.12 -									
				4.10 -									
				500000 520000 540000 560000 5800	00								
			[3]:	<axessubplot:></axessubplot:>									
			[4]:	alameda_bgs = gpd.read_fi	le("acs-bgs-alameda.geoj	son")							
			[5]:	alameda_bgs = alameda_bgs	[alameda_bgs[<mark>"B19013001"</mark>] < 100000]							
			[6]:	alameda_bgs									
			[6]:	geoid	name	B19013001	B19013001, Error				geometry	,	
				7 15000US060014003003	BG 3, Tract 4003, Alameda, CA	31649.0	20947.0	MUL	TIPOLYGON (((-122.2656	3 37.83764 -122.2655		
				12 15000US060014005001	BG 1, Tract 4005, Alameda, CA	97039.0	36259.0	MUI	LTIPOLYGON	(((-122.266′	13 37.85201 -122.2660		
				14 15000US060014005003	BG 3, Tract 4005, Alameda, CA	85662.0	39567.0	MUL	TIPOLYGON	((-122.2695	i1 37.84858 -122.2693		
				47 4500000000000000000000000000000000000	DO 4 Tores 4007 Alemente OA	00574.0	000070	MUL	TIPOLYGON	(((-122.2777	7 37.84752		
s	imple 💽 0 🛐 1 🤠	Python 3 (ipykerne	el) Idle				Mode:	Command	⊗ Ln 1	, Col 1 ea	st-bay-hea	t-wave	e.ipynb

Example

Jupyter Notebooks

Programming Systems Geospatial programming abstractions are increasingly common in Python, R, and JavaScript

mapbox

 Must develop proficiency with programming languages and environments

geopandas

Research has yet to explore the specific obstacles **domain experts** face in their work with geospatial data.

GIS Usability

Computational Notebooks

Design Software

mapbox

Geospatial Analysis and Visualization Libraries

Analysis Visualization

Data Discovery Data Transformation Analysis Representation

Contribution

The goal of this research is to **identify the computing needs of domain expert geospatial data users**.

Roadmap

Roadmap

15

We conducted a contextual inquiry study with 25 participants.

Earth and Climate Science

Data Journalism

Interdisciplinary

We conducted a contextual inquiry study with 25 participants.

Number of Participants

Study Design

Session Structure and Analysis

• 50–70 minute open-task observations

- Followed by **semi-structured** post-interviews
- Inductive **thematic** analysis

Roadmap

Roadmap

1. Study Design

• 4. Introducing cartokit

Findings

We identified 12 challenges across five phases of participants' work with geospatial data.

Data Discovery

Solving Geospatial Data Constraints

Data Transformation

Aligning Geospatial Datasets

Topological Errors

Reducing Resolution to Improve Performance

Data Subsetting and Caching

Analysis

Identifying Geospatial Operators Understanding Geospatial Operator Semantics Visibility of Geometry in Programming Environments

Analysis Representation

Reproducing Geospatial Analyses

Creating Informal Program Representations

Visualization

Sketching Cartographic Variants

Geospatial Information in Design Software

preprocessing.

Reprojection

.

Resampling

Participants needed to transform datasets to a shared spatial and temporal reference for analysis, but alignment required complex

Clipping

Temporal Aggregation

PE2's Task. Develop a model to predict groundwater withdrawal.

Spatial Resolution

MOD16

USDA-NASS

500m

4638.3m

Temporal Interval

Geographic Extent

Global

Monthly

Conterminous U.S.

Conterminous U.S.

PE2's Task. Develop a model to predict groundwater withdrawal.

Spatial Resolution

Temporal Interval

Geographic Extent

Global

Monthly

Conterminous U.S.

Conterminous U.S.

PE2's Task. Develop a model to predict groundwater withdrawal.

Spatial Resolution

Temporal Interval

Yearly

Accumulate 🕂

Geographic Extent

Global

y Yearly

Accumulate

Conterminous U.S.

Conterminous U.S.

PE2's Task. Develop a model to predict groundwater withdrawal.

Spatial Resolution

Temporal Interval

Geographic Extent

y y	Yearly	Global	Kansas
· Accumu	late	Clip	
: hly · Accumu	Yearly late:	Conterminous U.S.	Kansas
y		Conterminous U.S.	Kansas
26			

Aligning geospatial datasets required participants to have significant about the datasets themselves.

Server Toolbox Ready to Use Toolbox **Spatial Analyst Toolbox** Spatial Statistics Toolbox ... +35 More

Bitwise Left Shift Kriging Raster Calculator Iso Cluster Unsupervised Fuzzy Overlay Zonal Histogram Darcy Flow ... +200 More

Identify the correct sequence of transformations among hundreds of operators

fluency in geospatial data theory in addition to contextual information

Expected

Actual

Determine when selected **transformations** produced **undesirable results**

Findings

We identified 12 challenges across five phases of participants' work with geospatial data.

Data Discovery

Solving Geospatial Data Constraints

Data Transformation

Aligning Geospatial Datasets

Topological Errors

Reducing Resolution to Improve Performance

Data Subsetting and Caching

Analysis

Identifying Geospatial Operators Understanding Geospatial Operator Semantics Visibility of Geometry in Programming Environments

Analysis Representation

Reproducing Geospatial Analyses

Creating Informal Program Representations

Visualization

Sketching Cartographic Variants

Geospatial Information in Design Software

Participants wanted to visualize their data using many different **cartographic representations** to:

- Identify the map type that represented their data most effectively
- Produce tangible artifacts for collaborators to evaluate

PJ5 created over **20 draft maps** for a story on biased predictive policing algorithms.

Choropleth and Dot Density

Gridded Heat Map

Gridded Heat Map with Bar Charts

Producing most map variants required going through **the entire analysis and visualization pipeline**.

Census Tracts

Counties

Additional Data Transformation

Across Multiple Tools

Participants tried to speed up the drafting process in creative ways. One common technique involved screenshotting in-progress maps.

Participant E5

Participant J6

Participant S2

Participants tried to **speed up** the drafting process in creative ways. One common technique involved **screenshotting in-progress maps**.

Participant J6

Screenshots

-ayouts

Screenshotting came with limitations.

 Only allowed users to capture cartographic changes within a map type rather than across map types
 Once a final map design was chosen, participants had to reproduce the selected draft in code

Roadmap

2. Findings

1. Study Design

3. Design Opportunities

• 4. Introducing cartokit

Roadmap

2. Findings

1. Study Design

• 4. Introducing cartokit

Design Opportunities

We synthesized **six design opportunities** for designers and developers of geospatial analysis and visualization systems.

Solving Geospatial Data Constraints

Opportunity 1. Participants struggled to find geospatial data satisfying complex spatial and temporal constraints (Section 5.1). While many could describe their constraints succinctly, satisfying them involved constructing bespoke workflows to combine, align, and simplify their raw datasets (Section 5.2). These challenges suggest an opportunity for tools that (1) offer alternative programming abstractions to express data constraints and (2) infer geospatial data queries and transformations from constraints.

Assistive Tools for Constructing Geospatial Analysis Pipelines

Opportunity 2. Participants could describe the target outputs of their geospatial analyses but struggled to construct pipelines to produce them (Section 5.3). This suggests an opportunity for tools that (1) accept noncode specifications of analysis intent, (2) synthesize analysis programs that satisfy specifications, and (3) support users in editing programs.

Opportunity 3. Participants relied on running operators and manually inspecting outputs to understand operator semantics (Section 5.3.2). This was computationally expensive and time-consuming, suggesting an opportunity for tools that surface information on operator semantics without requiring execution across entire inputs.

Reproducible, Shareable **Geospatial Workflows**

Opportunity 4. Participants using GISs struggled to create reproducible, shareable geospatial workflows (Section 5.4.2). Limitations in existing history interfaces made it difficult to recover information on the current analysis state or revisit past analysis decisions (Section 5.4.1). These struggles suggest opportunities for tools that (1) support efficient search through system history and (2) distill history into a portable and executable representation.

Exploring the **Cartographic Design** Space

Opportunity 5. Participants wanted to visualize their geospatial data using multiple cartographic representations, but transitioning between representations required engineering each one from scratch (Section 5.5.1). This suggests an opportunity for cartographic design tools that reduce the viscosity [8] of switching between map types.

Opportunity 6. Many participants used direct manipulation design software to visualize geospatial data. These tools discard all geographic information, making it difficult to refactor an analysis once visualization work has begun (Section 5.5.2). This suggests an opportunity for tools that (1) bridge geospatial analysis and cartographic design and (2) maintain the underlying geospatial data representation of graphical elements while supporting direct manipulation.

Design Opportunities

"viscosity" of map type transitions.

vega-lite

plot

ggplot2

Possible Solution. Grammar of Graphics

Opportunity. Cartographic design tools could focus on reducing the

Restrict geospatial file formats, data models, and map types \Rightarrow Could not express many of the maps participants made

Design Opportunities

Opportunity. Cartographic design tools could **pair programmatic** and direct manipulation paradigms for map construction.

Sketch-n-Sketch

Edit **source** or **output** and propagate edits **bidirectionally** ⇒ Design maps using **direct** manipulation while giving access to program representations

Roadmap

2. Findings

1. Study Design

• 4. Introducing cartokit

Roadmap

3. Design Opportunities

2. Findings

1. Study Design

A direct manipulation programming system for interactive cartography on the web.

Introducing cartokit A direct manipulation programming system for interactive cartography on the web.

Edit programs through direct manipulation of the output

A direct manipulation programming system for interactive cartography on the web.

🗖 🛄 📄 🖪 🏘 Ġ

•	Properties
	Map Type Proportional Symbol ~
	Attribute poly_Acres_AutoCalc ~
Okla	Size Min 1 Max 50
a Fal	Fill #da5824 Opacity 75%
Au	Waco Alexandria stin B Houston Victoria
Cor	Hide Source

style: "mapbox://styles/mapbox/dark-v10" center: [-81, 26.5], ap.on("load", () => { const centroids = data.features.map((feature) => { return turf.feature(turf.centroid(feature).geometry, ap.addSource("nifc-2023-fires", { type: "geojson" data: turf.featureCollection(centroids) nap.addLayer(· id: "nifc-2023-fires", source: "nifc-2023-fires" type: "circle",

- paint: { "circle-color": "#da5824" 'circle-radius": [interpolate", ["linear"]
- ["sqrt", ["get", "poly_Acres_AutoCalc"]] 584.5802494674336.

onst map = new mapboxgl.Map

container: "map".

- "circle-opacity": 0.75,

Synthesize the program to produce the output map

A direct manipulation programming system for interactive cartography on the web.

> Support sophisticated geospatial data transformations

A direct manipulation programming system for interactive cartography on the web.

Core Challenge. Transforming data to achieve different cartographic representations.

Demo

Can we reproduce this graphic¹ from the Washington Post using cartokit?

1. Will global warming make temperature less deadly? Washington Post <u>https://www.washingtonpost.com/climate-</u> environment/interactive/2023/hot-cold-extreme-temperaturedeaths/.

Change in deaths linked to temperature

Projected average for 2080-2099, compared to a world without additional emissions

Globe shows RCP4.5 scenario. Antarctica left blank because it has no permanent human population.

Source: Climate Impact Lab via Human Climate Horizons. Method detailed in Carleton et. al., 2022.

