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Non-ML Rules for Reliable ML Deployments

Whatdo ML Engineers Actually Do?

We conducted an interview study of 18 ML engineers across organizations of

different sizes and sectors. We found four high-level tasks in their workflows. Myths Tips
Data Collection QL& X Build models “robust” to v/ Frequently retrain models
N e e e _ g data distribution shift on latest data
Cleaning, preprocessing, . C e
St setenEs, [ . - | X Always serve the latest v/ Maintain simple models
| wrangling Monitoring s bofh metrics model’s predictions and heuristics for rollback
have ideas of] things and then a predicate over _ _ _
that are correlated with Experimentation €2 & & those metrics that triggers X Validate only the outputs v Validate mpgts & outputs
what I'm trying to predict.” Model training, alerts. That second X Setand fOrget v On-call rotations j

adding or removing features

|
Evaluation and Deployment 2 I* # {

piece doesn’t exist—not

because the infrastructure

“You have this classic

IS hard, but because no

Hold-out dataset, good accuracy,
dynamic validation sets, A/B testing

Issue where most
one knows how to set

r rchers ar : ,
esearchers are those predicate values.

evaluat[ing] against .
ing] ag Monitoring and Response 122 </>
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on-call rotations ML engineers identified several pain points in their workflows, which we plan to
automate while building future systems and frameworks:

Challenges and Future Work
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e Mismatch between development and production environments: how do we
minimize errors in the process of promoting to production?

e Alert fatigue in data validation: how do we precisely determine when to reject
a prediction because of poor data quality?

e No two ML bugs are the same: how do we tame the long tail of ML bugs?

Evaluation: an Active Organizational Effort
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paranoid when you’re writing ML code.
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