



### LUX Always-on Visualization Recommendations

Doris Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen, Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, Aditya G. Parameswaran

# Ponder



### pandas: Swiss-Army Knife of Data Science

Rich API: 600+ functions for data loading, cleaning/preparation, and analysis



pd.read\_csv(...) pd.read\_json(...)

pd.read\_excel(...)



df.dropna(...)

```
df.fillna(...)
```

```
pd.get_dummies(...)
```



```
pd.join(...)
df.transpose(...)
df.pivot(...)
```



## Interoperability: Easy to integrate with existing data tools, e.g., Jupyter Notebook

| File Edit Vie | w Insert Cell Kernel Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ₽ + ≈ 4       | Image: Image |
| In [1]:       | <pre>import pandas as pd</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| In [2]:       | <pre>df = pd.DataFrame({     'A': [12, 13, 14, 15],     'B': [20, 40, 50, 30],     'C': [-100, 40, -10, -80] })</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| In [3]:       | df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Out[3]:       | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | <b>0</b> 12 20 -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | <b>1</b> 13 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | <b>2</b> 14 50 -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | <b>3</b> 15 30 -80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| In [4]:       | df2 = df.add(5) # Adding a value to all the elements of DataFrame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [5]:       | df2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Out[5]:       | ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 0 17 25 -95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | <b>1</b> 18 45 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | <b>2</b> 19 55 -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 3 20 35 -75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





Daily Download Quantity of pandas package - Overall

### 3M+ daily downloads



### People Love pandas





### Visualizations Come in Handy when Exploring Data with pandas

|   | HPIRank | Country     | GeoPoliticalRegion              | AvrgLifeExpectancy | AvrgWellBeing | HappyLifeYears |
|---|---------|-------------|---------------------------------|--------------------|---------------|----------------|
| C | ) 110   | Afghanistan | Middle East and<br>North Africa | 59.7               | 3.8           | 12.4           |
| 1 | 13      | Albania     | Post-communist                  | 77.3               | 5.5           | 34.4           |
| 2 | 30      | Algeria     | Middle East and<br>North Africa | 74.3               | 5.6           | 30.5           |
|   |         |             |                                 |                    |               |                |

### Mean of AvrgLifeExpectancy across World







## Preparing Data Involves a Substantial Amount of Code

| 💭 Jupytei | ChurnAnalysis Last Checkpoint: a minute ago (autosaved)                                                                                                                                                                                                                                                       | Cogout                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| File Edit | View Insert Cell Kernel Widgets Help                                                                                                                                                                                                                                                                          | Not Trusted 🖋 Python 3 O |
| ₽ + %     | A ↓ N Run ■ C → Code ↓                                                                                                                                                                                                                                                                                        |                          |
| In [1]:   | <pre>from datetime import datetime, timedelta,date import pandas as pd # %matplotlib inline from sklearn.metrics import classification_report,confusion_matrix import matplotlib.pyplot as plt import numpy as np import seaborn as sns # fromfuture import division from sklearn.cluster import KMeans</pre> |                          |
| In [2]:   | <pre>import chart_studio.plotly as py # DORIS: change to make this import work # import plotly.plotly as py import plotly.offline as pyoff import plotly.graph_objs as go</pre>                                                                                                                               |                          |
| In [3]:   | <pre>import xgboost as xgb from sklearn.model_selection import KFold, cross_val_score, train_test_split</pre>                                                                                                                                                                                                 |                          |
| In [4]:   | <pre>pyoff.init_notebook_mode()</pre>                                                                                                                                                                                                                                                                         |                          |
| In [ ]:   | <pre>df_data = pd.read_csv('churn_data.csv')</pre>                                                                                                                                                                                                                                                            |                          |
| In [ ]:   | df_data.head(10)                                                                                                                                                                                                                                                                                              |                          |
| In [ ]:   | df_data.info()                                                                                                                                                                                                                                                                                                |                          |
| In [ ]:   | <pre>df_data.loc[df_data.Churn=='No','Churn'] = 0 df_data.loc[df_data.Churn=='Yes','Churn'] = 1</pre>                                                                                                                                                                                                         |                          |
| In [ ]:   | <pre>df_data.groupby('gender').Churn.mean()</pre>                                                                                                                                                                                                                                                             |                          |
| In [ ]:   | <pre>df_plot = df_data.groupby('gender').Churn.mean().reset_index() plot_data = [     go.Bar(         x=df_plot['gender'],         v=df_plot['Churp']</pre>                                                                                                                                                   |                          |







### Creating Many Visualizations Involves Much Code



| import matp |
|-------------|
| import pand |
| df = pd.rea |
| barVal = df |
| y_pos = ran |
| plt.barh(y_ |
| plt.yticks( |
| plt.xlabel( |
| plt.ylabel( |
| plt.show()  |

What should my visualizations look like?

What encodings or chart types should I pick?

Berkeley





*"over 20%—the majority—of duplicated code in notebooks is vis code"* 

[Koenzen et al. VL/HCC 2020]

users only visualize during "the late stages of their workflow"

[Batch et al. TVCG 2018]





4.2k Star

### Lux: Always-on Visualization Recommendations for **Exploratory Dataframe Workflows**

Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen, Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, Aditya G. Parameswaran

UC Berkeley

{dorislee,totemtang,kagarwal2,thyneboonmark,caitlynachen,cjache,ujjaini,jerrysong,micahtyong,hearst,adityagp}@berkeley.edu

### ABSTRACT

Exploratory data science largely happens in computational notebooks with dataframe APIs, such as pandas, that support flexible means to transform, clean, and analyze data. Yet, visually exploring data in dataframes remains tedious, requiring substantial programming effort for visualization and mental effort to determine what analysis to perform next. We propose LUX, an *always-on* framework for accelerating visual insight discovery in dataframe workflows. When users print a dataframe in their notebooks, LUX recommends visualizations to provide a quick overview of the patthe fluid, iterative process of data science, for two reasons: cumbersome boilerplate code and challenges in determining the next steps.

**Cumbersome Boilerplate Code.** Substantial boilerplate code is necessary to simply generate a visualization from dataframes. In a formative study, we analyzed a sample of 587 publicly-available notebooks from Rule et al. [63] to understand current visualization practices. A surprising number of notebooks apply a series of data processing operations to wrangle the dataframe into a form amenable to visualization, followed by a set of highly-templatized



### LUX An Always-On Dataframe Visualization Tool [VLDB'22]

### 400k+ downloads

Used by many data practitioners

UK FLOORING DIRECT 111111 H,O.C Allianz (II) <sup>III</sup> Bristol Myers Squibb BERKELEY LAB **vm**ware<sup>®</sup> NOKIA VOXMEDIA **ATLASSIAN** Technical NCM M University of المـــركــــز الوطـــنــى للأرصــــاد Denmark

## Key Challenges

- How do we display visual recommendations to users in a seamless manner?
- What recommendations should we show to advance analysis?
- How do we allow users to steer recommendations?
- How do we return results in a reasonable amount of time?





## Key Challenges

- How do we display visual recommendations to users in a seamless manner?
- What recommendations should we show to advance analysis?
- How do we allow users to steer recommendations?
- How do we return results in a reasonable amount of time?





### Always-on Dataframe Visualization Beyond Tables





### df

Toggle Pandas/Lux

|     | Entity      | Code | Day            | stringency | Country     | Region             | AvrgLifeExpectancy | AvrgWellBeing | HappyLifeYears | Footprint | Inequality | HappyPlanetIn |
|-----|-------------|------|----------------|------------|-------------|--------------------|--------------------|---------------|----------------|-----------|------------|---------------|
| 0   | Afghanistan | AFG  | 2020-<br>03-11 | 27.78      | Afghanistan | Middle<br>East     | 59.7               | 3.8           | 12.4           | 0.8       | 0.43       | 2             |
| 1   | Albania     | ALB  | 2020-<br>03-11 | 51.85      | Albania     | Post-<br>communist | 77.3               | 5.5           | 34.4           | 2.2       | 0.17       | 3             |
| 2   | Algeria     | DZA  | 2020-<br>03-11 | 16.67      | Algeria     | Middle<br>East     | 74.3               | 5.6           | 30.5           | 2.1       | 0.24       | 3             |
| 3   | Argentina   | ARG  | 2020-<br>03-11 | 25.00      | Argentina   | Americas           | 75.9               | 6.5           | 40.2           | 3.1       | 0.16       | 3             |
| 4   | Australia   | AUS  | 2020-<br>03-11 | 19.44      | Australia   | Asia<br>Pacific    | 82.1               | 7.2           | 53.1           | 9.3       | 0.08       | 2             |
|     |             |      |                |            |             |                    |                    |               |                |           |            |               |
| 124 | Venezuela   | VEN  | 2020-<br>03-11 | 11.11      | Venezuela   | Americas           | 73.9               | 7.1           | 41.5           | 3.6       | 0.19       | 3             |
| 125 | Vietnam     | VNM  | 2020-<br>03-11 | 47.22      | Vietnam     | Asia<br>Pacific    | 75.5               | 5.5           | 32.8           | 1.7       | 0.19       | 2             |
| 126 | Yemen       | YEM  | 2020-<br>03-11 | 0.00       | Yemen       | Middle<br>East     | 63.3               | 4.1           | 15.2           | 1.0       | 0.39       | 2             |
|     |             |      |                |            |             |                    |                    |               |                |           |            |               |







Lux preserves the Pandas dataframe semantics -- which means that you can apply any command from Pandas's API to the dataframes in Lux and expect the same behavior.

From the Pandas table view, we see that the dataframe contains country-level data on sustainability and well-being. By clicking on the Toggle button, you can now explore the data visually through Lux, you should see several tabs of visualizations recommended to you that includes scatterplots, bar charts, and maps. In Lux, we recommend

By inspecting the Correlation tab, we learn that there is a negative correlation between AvrgLifeExpectancy and Inequality. In other words, countries with higher levels of inequality also have a lower average life expectancy. We can also look at other tabs, which show the Distribution of quantitative attributes and the

Let's say that we want to investigate whether any country-level characteristics explain the observed negative correlation between inequality and life expectancy. Beyond the

## Key Challenges

- What recommendations should we show to advance analysis?
- How do allow users to express the intent with minimal efforts?
- How do we return results in a reasonable amount of time?



### How do we display visual recommendations to users in a seamless manner?

### The Choice of Visualization Recommendations

### Deconstructing Categorization in Visualization Recommendation: A Taxonomy and Comparative Study

Doris Jung-Lin Lee, Vidya Setlur, Melanie Tory, Karrie Karahalios, Aditya Parameswaran

Abstract—Visualization recommendation (VisRec) systems provide users with suggestions for potentially interesting and useful next steps during exploratory data analysis. These recommendations are typically organized into categories based on their analytical actions, i.e., operations employed to transition from the current exploration state to a recommended visualization. However, despite the emergence of a plethora of VisRec systems in recent work, the utility of the categories employed by these systems in analytical workflows has not been systematically investigated. Our paper explores the efficacy of recommendation categories by formalizing a taxonomy of common categories and developing a system, Frontier, that implements these categories. Using Frontier, we evaluate workflow strategies adopted by users and how categories influence those strategies. Participants found recommendations that add attributes to enhance the current visualization and recommendations that filter to sub-populations to be comparatively most useful during data exploration. Our findings pave the way for next-generation VisRec systems that are adaptive and personalized via carefully chosen, effective recommendation categories.

Index Terms—Visual analysis; analytical workflow; discovery-driven analysis; visualization recommendations.

### INTRODUCTION

Feb 202

14

H

CS.]

Exploratory visual analysis is an iterative process of analytical-action-based recommendation categories without asking and answering questions about data through visual- a clear understanding of why the set was selected. This izations, where new questions often arise from unexpected limited selection of categories in existing systems stems observations. Challenges arise when the current analysis from challenges in both *development* and *evaluation*. From path does not yield interesting observations; this common an evaluation standpoint, determining the value of a given pain point can cause users to feel stuck or overwhelmed, recommendation for a specific user goal is, in general, a unsure of what question to ask next [1], [2]. Visualization challenge in recommender system design [12], but doing recommendation (VisRec) systems guide users along their so for visual analysis tools is even harder. Unlike web exploration journey by suggesting effective visual encod- search, where the typical goal is to find a single item (e.g.





To mirror human analyst behavior, visualization recommendations map to analytical actions from their current exploration state.

How do we represent the current state of exploration? [*Attributes* being visualized, *Filters* being applied]



### Transitions in the Visualization Space





### Space of Analytical Actions



### Attribute Hierarchy





Filter Hierarchy

## Key Challenges

- How do we display visual recommendations to users in a seamless manner? What recommendations should we show to advance analysis?
- How do we allow users to steer recommendations?
- How do we return results in a reasonable amount of time?



### Data-centric Intent



Key Insight: Empower users to specify data-centric aspects in a lightweight manner, with the system automatically filling in the 'gaps" 11



17

## Creating Visualizations on Demand



18



### Based on a formal regex language

 $\langle Intent \rangle \rightarrow \langle Clause \rangle^+$  $\langle Clause \rangle \rightarrow \langle Axis \rangle \mid \langle Filter \rangle$  $\langle Filter \rangle \rightarrow \langle attribute \rangle \ [=><\leq \geq \neq] \ \langle value \rangle$  $\langle attribute \rangle \rightarrow attribute \cup \langle attribute \rangle^* | ? \langle constraint \rangle$  $\langle value \rangle \rightarrow value \cup \langle value \rangle^* \mid ?$ 



### Formal Basis and Comparison

### More succinct than other frameworks

| Required Specification                                                                                                                                                                                                            |                                                                                                                                                                                               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Data source Field Name Data o                                                                                                                                                                                                     | peration Channel Field Type Ma                                                                                                                                                                |  |  |  |  |
| Intent                                                                                                                                                                                                                            | Imperative                                                                                                                                                                                    |  |  |  |  |
| <pre>Vis(["Age", "Education"],df) Lux</pre>                                                                                                                                                                                       | <pre>bar=df.groupby("Education").mean()["Age" y_pos=range(len(bar))</pre>                                                                                                                     |  |  |  |  |
| <b>Declarative</b> {     "mark": "bar",                                                                                                                                                                                           | <pre>plt.barh(y_pos,bar,align='center') plt.yticks(y_pos,list(bar.index)) plt.xlabel('Mean of Age') plt.ylabel('Education') matplo</pre>                                                      |  |  |  |  |
| <pre>data : {},<br/>"encoding": {<br/>"x": {<br/>"type": "quantitative",<br/>"field": "Age",<br/>"aggregate": "average"<br/>},<br/>"y": {<br/>"type": "nominal",<br/>"field": "Education",<br/>}<br/>}<br/><i>Vega-Lite</i></pre> | <pre>Partial data(""). encoding(e0). channel(e0,x). type(e0,quantitative). field(e0, "Age"). aggregate(e0,mean). encoding(e1). channel(e1,y). type(e1,nominal). field(e1, "Education").</pre> |  |  |  |  |



## Key Challenges

- How do we display visual recommendations to users in a seamless manner? What recommendations should we show to advance analysis?
- How do we allow users to steer recommendations?
- How do we return results in a reasonable amount of time?



### Visualization Recommendation is Costly

Collecting metadata for deciding data types and chart types

Min/max and cardinality for each unique value for each column



**Recommend visualizations** 

Computing the interestingness scores for candidate visualizations

### System Optimizations

- Intelligent workflow-based optimizations (WFLOW) Approximate early pruning of search space (PRUNE) Cost-based scheduling of actions (ASYNC)



### Intelligent workflow-based optimizations (WFLOW)

df['review\_date'] = pd.to\_datetime(df[' df.drop(columns=['Unnamed: 0'], inplace

df df.groupby("company\_location").mean() df.info()

### **Optimizations**

df

- 1) We can lazily compute only when users print df
- 2)



### No optimization WFLOW

| <pre>[1] "review_date"],format="%Y") =True)</pre> | 4 |  |
|---------------------------------------------------|---|--|
| [2]                                               |   |  |
| [3]                                               | 4 |  |
| [4]                                               | 4 |  |
| [5]                                               | 4 |  |

We can cache and reuse results across the session (with careful accounting...)

## Approximate early pruning of search space (PRUNE)

Collecting metadata for deciding data types and chart types



**Recommend visualizations** 

### Approximate the interestingness scores using sampled data





## Cost-based scheduling of actions (ASYNC)

Correlation Distribution Occurrence Geographic Show choropleth maps of **geographic** attributes Mean of HappyPlanetIndex across World





### Experiment Evaluation

|             | Num of Columns | Num of Print df | Num of Print series |
|-------------|----------------|-----------------|---------------------|
| AirBnb      | 12             | 14              | 7                   |
| Communities | 128            | 14              | 4                   |



### Experiment Evaluation





### Modin: A "drop-in" Scalable Replacement for pandas







## Modin: A "drop-in" Scalable Replacement for pandas







## Lessons Learned from Building Lux

- Integration with existing workflows
- Integration with downstream tools
- The ability for customization

# Democratizing Data Work via No-code and Low-code interfaces



# Thank You!



github.com/lux-org/lux



# Backup Slides

### About me

- PhD'20 at UChicago
- Jan. 2021 now: Postdoc with Prof. Aditya G. Parameswaran at UC Berkeley



• My Research: building usable, scalable, and cost-effective solutions for data scientists