
Operationalizing Machine Learning

An Interview Study

Shreya Shankar*, Rolando Garcia*, Joseph M. Hellerstein, Aditya G.
Parameswaran

October 2022

University of California, Berkeley
Co-first Authors*

Outline

A New Wave of Software Engineering

Characterizing the Production ML Workflow

MLOps Practices

MLOps Pain Points

Current and Future Work

Shankar and Garcia et al.

Modern Intelligent Applications

� � ×

I ÿ h

Shankar and Garcia et al.

A Dark Art #

Ð
õ

A

H

How to do this with much less ML and CS training?
Goal: build relevant and useful ML tools

Shankar and Garcia et al.

A Dark Art #

Ð
õ

A

H

How to do this with much less ML and CS training?
Goal: build relevant and useful ML tools

Shankar and Garcia et al.

A Dark Art #

Ð
õ

A

H

How to do this with much less ML and CS training?
Goal: build relevant and useful ML tools

Shankar and Garcia et al.

Textbook ML _

Data Collection Û

Sourcing, labeling, cleaning, wrangling

Model Training Ô

Model Evaluation §

Hold-out dataset, good accuracy, no overfitting

Deploy! Ç

Shankar and Garcia et al.

Textbook ML _

Data Collection Û

Sourcing, labeling, cleaning, wrangling

Model Training Ô

Model Evaluation §

Hold-out dataset, good accuracy, no overfitting

Deploy! Ç

Shankar and Garcia et al.

Textbook ML _

Data Collection Û

Sourcing, labeling, cleaning, wrangling

Model Training Ô

Model Evaluation §

Hold-out dataset, good accuracy, no overfitting

Deploy! Ç

Shankar and Garcia et al.

Textbook ML _

Data Collection Û

Sourcing, labeling, cleaning, wrangling

Model Training Ô

Model Evaluation §

Hold-out dataset, good accuracy, no overfitting

Deploy! Ç

Shankar and Garcia et al.

Textbook ML _

Data Collection Û

Sourcing, labeling, cleaning, wrangling

Model Training Ô

Model Evaluation §

Hold-out dataset, good accuracy, no overfitting

Deploy! Ç

Shankar and Garcia et al.

Textbook Deployment Ç

Loss

Time

Training set

Validation set

Ship it? ë

Overly
simplistic!

Shankar and Garcia et al.

Textbook Deployment Ç

Loss

Time

Training set

Validation set

Ship it? ë

Overly
simplistic!

Shankar and Garcia et al.

Textbook Deployment Ç

Loss

Time

Training set

Validation set

Ship it? ë

Overly
simplistic!

Shankar and Garcia et al.

Textbook Deployment Ç

Loss

Time

Training set

Validation set

Ship it? ë

Overly
simplistic!

Shankar and Garcia et al.

Textbook Deployment Ç

Loss

Time

Training set

Validation set

Ship it? ë

Overly
simplistic!

Shankar and Garcia et al.

A New Wave of Software
Engineering

ML is Hard to Operationalize

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

A Typical MLOps Scenario X

Data Collection Û

Model Training Ô

Model Evaluation §

Deploy! Ç

BP

End UserML EngineerML Engineer

Data
changes

Models
change

Teams
change

Business goals
change

Customer needs
change

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

ML Engineers: Doing it All Ð

ML Engineer

ª
Data cleaning

å
Feature

engineering

C
Experimentation

Ñ
Staging

deployment

¢
Monitoring

Ð
Debugging

Data en-
gineering

Data
science

Software
engineering

Shankar and Garcia et al.

How do people put and keep ML models in
production?

Shankar and Garcia et al.

Interview Setup

Role Company Size Sector

p1 MLE Manager Large Autonomous vehicles
p2 MLE Medium Autonomous vehicles
p3 MLE Small Computer hardware
p4 MLE Medium Retail
p5 MLE Manager Large Ads
p6 MLE Large Cloud computing
p7 MLE Small Finance
p8 MLE Small Bioinformatics

p10 MLE Small Banking
p11 MLE Manager Medium Banking
p12 MLE Large Cloud computing
p13 MLE Small Bioinformatics
p14 MLE Medium Cybersecurity
p15 MLE Medium Fintech
p16 MLE Small Marketing and analytics
p17 MLE Medium Website builder
p18 MLE Large Recommender systems
p19 MLE Manager Large Ads

Small: < 100, medium-sized: 100-1000, and large: > 1000 employees.

Shankar and Garcia et al.

Outline

A New Wave of Software Engineering

Characterizing the Production ML Workflow

MLOps Practices

MLOps Pain Points

Current and Future Work

Shankar and Garcia et al.

Revisiting the ML Lifecycle º

Data Collection Û ª

Model Training Experimentation Ô å C

Model Evaluation and Deployment § Ñ Ç

Hold-out dataset, good accuracy, no overfitting,
dynamic validation sets, A/B testing

Deploy! Monitoring and Response ¢ Ð

Rule-based guardrails, on-call rotations

Shankar and Garcia et al.

Revisiting the ML Lifecycle º

Data Collection Û ª

Model Training Experimentation Ô å C

Model Evaluation and Deployment § Ñ Ç

Hold-out dataset, good accuracy, no overfitting,
dynamic validation sets, A/B testing

Deploy! Monitoring and Response ¢ Ð

Rule-based guardrails, on-call rotations

Shankar and Garcia et al.

Revisiting the ML Lifecycle º

Data Collection Û ª

Model Training Experimentation Ô å C

Model Evaluation and Deployment § Ñ Ç

Hold-out dataset, good accuracy, no overfitting,
dynamic validation sets, A/B testing

Deploy! Monitoring and Response ¢ Ð

Rule-based guardrails, on-call rotations

Shankar and Garcia et al.

Revisiting the ML Lifecycle º

Data Collection Û ª

Model Training Experimentation Ô å C

Model Evaluation and Deployment § Ñ Ç

Hold-out dataset, good accuracy, no overfitting,
dynamic validation sets, A/B testing

Deploy! Monitoring and Response ¢ Ð

Rule-based guardrails, on-call rotations

Shankar and Garcia et al.

Outline

A New Wave of Software Engineering

Characterizing the Production ML Workflow

MLOps Practices

MLOps Pain Points

Current and Future Work

Shankar and Garcia et al.

MLOps Practices

Operationalizing evaluation requires
active efforts

Dynamic Validation Datasets õ

Every [failed prediction] gets into the
same queue, and 3 of us sit down
once a week and go through the
queue...then our [analysts] collect
more [similar] data. (P8)

Every [failed prediction] gets into
the same queue, and 3 of us sit down
once a week and go through the
queue...then our [analysts] collect
more [similar] data. (P8)

Shankar and Garcia et al.

Dynamic Validation Datasets õ

Every [failed prediction] gets into the
same queue, and 3 of us sit down
once a week and go through the
queue...then our [analysts] collect
more [similar] data. (P8)

Every [failed prediction] gets into
the same queue, and 3 of us sit down
once a week and go through the
queue...then our [analysts] collect
more [similar] data. (P8)

Shankar and Garcia et al.

Multi-Staged Evaluation ¨

We spent a long time very slowly, ramping
up the model to very small percentages of
traffic and watching what happened. [When
there was a failure mode,] a product person
would ping us and say: hey, this was kind
of weird, should we create a rule around
this [suggested text] to filter this out? (P15)

We spent a long time very slowly, ramping
up the model to very small percentages
of traffic and watching what happened.
[When there was a failure mode,] a prod-
uct person would ping us and say: hey,
this was kind of weird, should we create
a rule around this [suggested text] to filter
this out? (P15)

Shankar and Garcia et al.

Multi-Staged Evaluation ¨

We spent a long time very slowly, ramping
up the model to very small percentages of
traffic and watching what happened. [When
there was a failure mode,] a product person
would ping us and say: hey, this was kind
of weird, should we create a rule around
this [suggested text] to filter this out? (P15)

We spent a long time very slowly, ramping
up the model to very small percentages
of traffic and watching what happened.
[When there was a failure mode,] a prod-
uct person would ping us and say: hey,
this was kind of weird, should we create
a rule around this [suggested text] to filter
this out? (P15)

Shankar and Garcia et al.

Balancing ML and Product Metrics 8

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to [the
product], then [we can fully de-
ploy]. (P17)

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to
[the product], then [we can fully
deploy]. (P17)

Shankar and Garcia et al.

Balancing ML and Product Metrics 8

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to [the
product], then [we can fully de-
ploy]. (P17)

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to
[the product], then [we can fully
deploy]. (P17)

Shankar and Garcia et al.

Balancing ML and Product Metrics 8

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to [the
product], then [we can fully de-
ploy]. (P17)

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to
[the product], then [we can fully
deploy]. (P17)

Shankar and Garcia et al.

Balancing ML and Product Metrics 8

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to [the
product], then [we can fully de-
ploy]. (P17)

The first task is to figure out, what are customers
actually interested in, or what’s the metric that
they care about. (P16)

If we can get a statistically sig-
nificant greater percentage
[of] people to subscribe to
[the product], then [we can fully
deploy]. (P17)

Shankar and Garcia et al.

Keeping up with Change +

Myths

p Static hold-out set
p Global metric suffices
p ML metrics only

Tips

✓ Dynamic datasets
✓ Check underperforming
populations
✓ ML and product metrics

Shankar and Garcia et al.

Keeping up with Change +

Myths

p Static hold-out set
p Global metric suffices
p ML metrics only

Tips

✓ Dynamic datasets
✓ Check underperforming
populations
✓ ML and product metrics

Shankar and Garcia et al.

Revisiting the ML Lifecycle º

Data Collection Û ª

Model Training Experimentation Ô å C

Model Evaluation and Deployment § Ñ Ç

Hold-out dataset, good accuracy, no overfitting,
dynamic validation sets, A/B testing

Deploy! Monitoring and Response ¢ Ð

Rule-based guardrails, on-call rotations

Shankar and Garcia et al.

MLOps Practices

Non-ML rules and human-in-the-loop
practices keep models reliable in
production

Data Distribution Shift ¡

Journal of Machine Learning Research 10 (2009) 2137-2155 Submitted 4/08; Revised 7/09; Published 9/09

Discriminative Learning Under Covariate Shift

Steffen Bickel BICKEL@CS.UNI-POTSDAM.DE
Michael Brückner MIBRUECK@CS.UNI-POTSDAM.DE
Tobias Scheffer SCHEFFER@CS.UNI-POTSDAM.DE
University of Potsdam, Department of Computer Science
August-Bebel-Str. 89
14482 Potsdam, Germany

Editor: Bianca Zadrozny

Abstract
We address classification problems for which the training instances are governed by an input dis-
tribution that is allowed to differ arbitrarily from the test distribution—problems also referred to
as classification under covariate shift. We derive a solution that is purely discriminative: neither
training nor test distribution are modeled explicitly. The problem of learning under covariate shift
can be written as an integrated optimization problem. Instantiating the general optimization prob-
lem leads to a kernel logistic regression and an exponential model classifier for covariate shift. The
optimization problem is convex under certain conditions; our findings also clarify the relationship
to the known kernel mean matching procedure. We report on experiments on problems of spam
filtering, text classification, and landmine detection.
Keywords: covariate shift, discriminative learning, transfer learning

1. Introduction

Most machine learning algorithms are constructed under the assumption that the training data is
governed by the exact same distribution which the model will later be exposed to. In practice,
control over the data generation process is often less perfect. Training data may be obtained under
laboratory conditions that cannot be expected after deployment of a system; spam filters may be
used by individuals whose distribution of inbound emails diverges from the distribution reflected in
public training corpora; image processing systems may be deployed to foreign geographic regions
where vegetation and lighting conditions result in a distinct distribution of input patterns.

The case of distinct training and test distributions in a learning problem has been referred to
as covariate shift and sample selection bias—albeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distribution, but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and the missing at random case in the sample selection bias model
allow for differences between the training and test distribution of instances; the conditional distri-
bution of the class variable given the instance is constant over training and test set.

In the covariate shift problem setting, a training sample is available in matrix XL with row
vectors x1, . . . ,xm. This training sample is governed by an unknown distribution p(x|λ). Vector y
with elements y1, . . . ,ym are the labels for training examples and are drawn according to an unknown
target concept p(y|x). In addition, unlabeled test data becomes available in matrix XT with rows

c©2009 Steffen Bickel, Michael Brückner and Tobias Scheffer.

Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia⇤
Google Research

yovadia@google.com

Emily Fertig⇤†

Google Research
emilyaf@google.com

Jie Ren†

Google Research
jjren@google.com

Zachary Nado
Google Research

znado@google.com

D Sculley
Google Research

dsculley@google.com

Sebastian Nowozin
Google Research

nowozin@google.com

Joshua V. Dillon
Google Research

jvdillon@google.com

Balaji Lakshminarayanan‡

DeepMind
balajiln@google.com

Jasper Snoek‡

Google Research
jsnoek@google.com

Abstract

Modern machine learning methods including deep learning have achieved great
success in predictive accuracy for supervised learning tasks, but may still fall short
in giving useful estimates of their predictive uncertainty. Quantifying uncertainty
is especially critical in real-world settings, which often involve input distributions
that are shifted from the training distribution due to a variety of factors including
sample bias and non-stationarity. In such settings, well calibrated uncertainty
estimates convey information about when a model’s output should (or should not)
be trusted. Many probabilistic deep learning methods, including Bayesian-and non-
Bayesian methods, have been proposed in the literature for quantifying predictive
uncertainty, but to our knowledge there has not previously been a rigorous large-
scale empirical comparison of these methods under dataset shift. We present a large-
scale benchmark of existing state-of-the-art methods on classification problems
and investigate the effect of dataset shift on accuracy and calibration. We find that
traditional post-hoc calibration does indeed fall short, as do several other previous
methods. However, some methods that marginalize over models give surprisingly
strong results across a broad spectrum of tasks.

1 Introduction

Recent successes across a variety of domains have led to the widespread deployment of deep
neural networks (DNNs) in practice. Consequently, the predictive distributions of these models are
increasingly being used to make decisions in important applications ranging from machine-learning
aided medical diagnoses from imaging (Esteva et al., 2017) to self-driving cars (Bojarski et al., 2016).
Such high-stakes applications require not only point predictions but also accurate quantification
of predictive uncertainty, i.e. meaningful confidence values in addition to class predictions. With
sufficient independent labeled samples from a target data distribution, one can estimate how well

⇤Equal contribution
†AI Resident
‡Corresponding authors

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A unifying view on dataset shift in classification

Jose G. Moreno-Torres a,!, Troy Raeder b, Rocı́o Alaiz-Rodrı́guez c, Nitesh V. Chawla b, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, Universidad de Granada, 18071 Granada, Spain
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
c Universidad de León, Dpto. de Ingenierı́a Eléctrica y de Sistemas, Campus de Vegazana, 24071 León, Spain

a r t i c l e i n f o

Article history:
Received 29 November 2010
Received in revised form
6 June 2011
Accepted 15 June 2011
Available online 18 July 2011

Keywords:
Dataset shift
Data fracture
Changing environments
Differing training and test populations
Covariate shift
Sample selection bias
Non-stationary distributions

a b s t r a c t

The field of dataset shift has received a growing amount of interest in the last few years. The fact that
most real-world applications have to cope with some form of shift makes its study highly relevant.
The literature on the topic is mostly scattered, and different authors use different names to refer to the
same concepts, or use the same name for different concepts. With this work, we attempt to present a
unifying framework through the review and comparison of some of the most important works in the
literature.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The machine learning community has analyzed data quality in
classification problems from different perspectives, including data
complexity [29,7], missing values [19,21,39], noise [11,64,58,38],
imbalance [52,27,53] and, as is the case with this paper, dataset
shift [4,44,14]. Dataset shift occurs when the testing (unseen)
data experience a phenomenon that leads to a change in the
distribution of a single feature, a combination of features, or the
class boundaries. As a result the common assumption that
the training and testing data follow the same distributions is
often violated in real-world applications and scenarios.

While the research area of dataset shift has received significant
attention in recent years (most of the work is published in the last
eight years), the field suffers from a lack of standard terminology.
Independent authors working under different conditions use
different terms, making it difficult to find and compare proposals
and studies in the field.

Contributions. The main goal of this work is to provide a
unifying framework through the review and analysis of some of
the most important publications in the field, comparing the
terminology used in each of them and the exact definitions that

were given. We present a framework that can be useful in future
research and, at the same time, provide researchers unfamiliar
with the topic a brief introduction to it. Our goal with this work is
to not only unify different methods and terminologies under a
taxonomical structure, but also provide a guide to a researcher as
well as a practitioner in machine learning and pattern recogni-
tion. We use the notation in [44] as the base for the comparisons.
We also present a brief summary of solutions proposed in the
literature.

The remainder of this paper is organized as follows: Some basic
notation is introduced in Section 2. In Section 3, an analysis of the
name given to the field of study is presented. Section 4 details the
terminology used for the different types of dataset shift that can
appear. Section 5 presents examples demonstrating the effect of
these shifts on classifier performance. An analysis of some common
causes of dataset shift is presented in Section 6. A brief summary of
the solutions proposed in the literature is shown in Section 7.
Finally, some conclusions are presented in Section 8.

2. Notation

In this work, we focus on the analysis of dataset shift in
classification problems. A classification problem is defined by:

! A set of features or covariates x.
! A target variable y (the class variable).
! A joint distribution Pðy,xÞ.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2011.06.019

! Corresponding author.
E-mail addresses: jose.garcia.mt@decsai.ugr.es (J.G. Moreno-Torres),

traeder@cse.nd.edu (T. Raeder), rocio.alaiz@unileon.es (R. Alaiz-Rodrı́guez),
nchawla@cse.nd.edu (N.V. Chawla), herrera@decsai.ugr.es (F. Herrera).

Pattern Recognition 45 (2012) 521–530

p p p

Shankar and Garcia et al.

Data Distribution Shift ¡

Journal of Machine Learning Research 10 (2009) 2137-2155 Submitted 4/08; Revised 7/09; Published 9/09

Discriminative Learning Under Covariate Shift

Steffen Bickel BICKEL@CS.UNI-POTSDAM.DE
Michael Brückner MIBRUECK@CS.UNI-POTSDAM.DE
Tobias Scheffer SCHEFFER@CS.UNI-POTSDAM.DE
University of Potsdam, Department of Computer Science
August-Bebel-Str. 89
14482 Potsdam, Germany

Editor: Bianca Zadrozny

Abstract
We address classification problems for which the training instances are governed by an input dis-
tribution that is allowed to differ arbitrarily from the test distribution—problems also referred to
as classification under covariate shift. We derive a solution that is purely discriminative: neither
training nor test distribution are modeled explicitly. The problem of learning under covariate shift
can be written as an integrated optimization problem. Instantiating the general optimization prob-
lem leads to a kernel logistic regression and an exponential model classifier for covariate shift. The
optimization problem is convex under certain conditions; our findings also clarify the relationship
to the known kernel mean matching procedure. We report on experiments on problems of spam
filtering, text classification, and landmine detection.
Keywords: covariate shift, discriminative learning, transfer learning

1. Introduction

Most machine learning algorithms are constructed under the assumption that the training data is
governed by the exact same distribution which the model will later be exposed to. In practice,
control over the data generation process is often less perfect. Training data may be obtained under
laboratory conditions that cannot be expected after deployment of a system; spam filters may be
used by individuals whose distribution of inbound emails diverges from the distribution reflected in
public training corpora; image processing systems may be deployed to foreign geographic regions
where vegetation and lighting conditions result in a distinct distribution of input patterns.

The case of distinct training and test distributions in a learning problem has been referred to
as covariate shift and sample selection bias—albeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distribution, but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and the missing at random case in the sample selection bias model
allow for differences between the training and test distribution of instances; the conditional distri-
bution of the class variable given the instance is constant over training and test set.

In the covariate shift problem setting, a training sample is available in matrix XL with row
vectors x1, . . . ,xm. This training sample is governed by an unknown distribution p(x|λ). Vector y
with elements y1, . . . ,ym are the labels for training examples and are drawn according to an unknown
target concept p(y|x). In addition, unlabeled test data becomes available in matrix XT with rows

c©2009 Steffen Bickel, Michael Brückner and Tobias Scheffer.

Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia⇤
Google Research

yovadia@google.com

Emily Fertig⇤†

Google Research
emilyaf@google.com

Jie Ren†

Google Research
jjren@google.com

Zachary Nado
Google Research

znado@google.com

D Sculley
Google Research

dsculley@google.com

Sebastian Nowozin
Google Research

nowozin@google.com

Joshua V. Dillon
Google Research

jvdillon@google.com

Balaji Lakshminarayanan‡

DeepMind
balajiln@google.com

Jasper Snoek‡

Google Research
jsnoek@google.com

Abstract

Modern machine learning methods including deep learning have achieved great
success in predictive accuracy for supervised learning tasks, but may still fall short
in giving useful estimates of their predictive uncertainty. Quantifying uncertainty
is especially critical in real-world settings, which often involve input distributions
that are shifted from the training distribution due to a variety of factors including
sample bias and non-stationarity. In such settings, well calibrated uncertainty
estimates convey information about when a model’s output should (or should not)
be trusted. Many probabilistic deep learning methods, including Bayesian-and non-
Bayesian methods, have been proposed in the literature for quantifying predictive
uncertainty, but to our knowledge there has not previously been a rigorous large-
scale empirical comparison of these methods under dataset shift. We present a large-
scale benchmark of existing state-of-the-art methods on classification problems
and investigate the effect of dataset shift on accuracy and calibration. We find that
traditional post-hoc calibration does indeed fall short, as do several other previous
methods. However, some methods that marginalize over models give surprisingly
strong results across a broad spectrum of tasks.

1 Introduction

Recent successes across a variety of domains have led to the widespread deployment of deep
neural networks (DNNs) in practice. Consequently, the predictive distributions of these models are
increasingly being used to make decisions in important applications ranging from machine-learning
aided medical diagnoses from imaging (Esteva et al., 2017) to self-driving cars (Bojarski et al., 2016).
Such high-stakes applications require not only point predictions but also accurate quantification
of predictive uncertainty, i.e. meaningful confidence values in addition to class predictions. With
sufficient independent labeled samples from a target data distribution, one can estimate how well

⇤Equal contribution
†AI Resident
‡Corresponding authors

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A unifying view on dataset shift in classification

Jose G. Moreno-Torres a,!, Troy Raeder b, Rocı́o Alaiz-Rodrı́guez c, Nitesh V. Chawla b, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, Universidad de Granada, 18071 Granada, Spain
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
c Universidad de León, Dpto. de Ingenierı́a Eléctrica y de Sistemas, Campus de Vegazana, 24071 León, Spain

a r t i c l e i n f o

Article history:
Received 29 November 2010
Received in revised form
6 June 2011
Accepted 15 June 2011
Available online 18 July 2011

Keywords:
Dataset shift
Data fracture
Changing environments
Differing training and test populations
Covariate shift
Sample selection bias
Non-stationary distributions

a b s t r a c t

The field of dataset shift has received a growing amount of interest in the last few years. The fact that
most real-world applications have to cope with some form of shift makes its study highly relevant.
The literature on the topic is mostly scattered, and different authors use different names to refer to the
same concepts, or use the same name for different concepts. With this work, we attempt to present a
unifying framework through the review and comparison of some of the most important works in the
literature.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The machine learning community has analyzed data quality in
classification problems from different perspectives, including data
complexity [29,7], missing values [19,21,39], noise [11,64,58,38],
imbalance [52,27,53] and, as is the case with this paper, dataset
shift [4,44,14]. Dataset shift occurs when the testing (unseen)
data experience a phenomenon that leads to a change in the
distribution of a single feature, a combination of features, or the
class boundaries. As a result the common assumption that
the training and testing data follow the same distributions is
often violated in real-world applications and scenarios.

While the research area of dataset shift has received significant
attention in recent years (most of the work is published in the last
eight years), the field suffers from a lack of standard terminology.
Independent authors working under different conditions use
different terms, making it difficult to find and compare proposals
and studies in the field.

Contributions. The main goal of this work is to provide a
unifying framework through the review and analysis of some of
the most important publications in the field, comparing the
terminology used in each of them and the exact definitions that

were given. We present a framework that can be useful in future
research and, at the same time, provide researchers unfamiliar
with the topic a brief introduction to it. Our goal with this work is
to not only unify different methods and terminologies under a
taxonomical structure, but also provide a guide to a researcher as
well as a practitioner in machine learning and pattern recogni-
tion. We use the notation in [44] as the base for the comparisons.
We also present a brief summary of solutions proposed in the
literature.

The remainder of this paper is organized as follows: Some basic
notation is introduced in Section 2. In Section 3, an analysis of the
name given to the field of study is presented. Section 4 details the
terminology used for the different types of dataset shift that can
appear. Section 5 presents examples demonstrating the effect of
these shifts on classifier performance. An analysis of some common
causes of dataset shift is presented in Section 6. A brief summary of
the solutions proposed in the literature is shown in Section 7.
Finally, some conclusions are presented in Section 8.

2. Notation

In this work, we focus on the analysis of dataset shift in
classification problems. A classification problem is defined by:

! A set of features or covariates x.
! A target variable y (the class variable).
! A joint distribution Pðy,xÞ.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2011.06.019

! Corresponding author.
E-mail addresses: jose.garcia.mt@decsai.ugr.es (J.G. Moreno-Torres),

traeder@cse.nd.edu (T. Raeder), rocio.alaiz@unileon.es (R. Alaiz-Rodrı́guez),
nchawla@cse.nd.edu (N.V. Chawla), herrera@decsai.ugr.es (F. Herrera).

Pattern Recognition 45 (2012) 521–530

p p p

Shankar and Garcia et al.

Data Distribution Shift ¡

Journal of Machine Learning Research 10 (2009) 2137-2155 Submitted 4/08; Revised 7/09; Published 9/09

Discriminative Learning Under Covariate Shift

Steffen Bickel BICKEL@CS.UNI-POTSDAM.DE
Michael Brückner MIBRUECK@CS.UNI-POTSDAM.DE
Tobias Scheffer SCHEFFER@CS.UNI-POTSDAM.DE
University of Potsdam, Department of Computer Science
August-Bebel-Str. 89
14482 Potsdam, Germany

Editor: Bianca Zadrozny

Abstract
We address classification problems for which the training instances are governed by an input dis-
tribution that is allowed to differ arbitrarily from the test distribution—problems also referred to
as classification under covariate shift. We derive a solution that is purely discriminative: neither
training nor test distribution are modeled explicitly. The problem of learning under covariate shift
can be written as an integrated optimization problem. Instantiating the general optimization prob-
lem leads to a kernel logistic regression and an exponential model classifier for covariate shift. The
optimization problem is convex under certain conditions; our findings also clarify the relationship
to the known kernel mean matching procedure. We report on experiments on problems of spam
filtering, text classification, and landmine detection.
Keywords: covariate shift, discriminative learning, transfer learning

1. Introduction

Most machine learning algorithms are constructed under the assumption that the training data is
governed by the exact same distribution which the model will later be exposed to. In practice,
control over the data generation process is often less perfect. Training data may be obtained under
laboratory conditions that cannot be expected after deployment of a system; spam filters may be
used by individuals whose distribution of inbound emails diverges from the distribution reflected in
public training corpora; image processing systems may be deployed to foreign geographic regions
where vegetation and lighting conditions result in a distinct distribution of input patterns.

The case of distinct training and test distributions in a learning problem has been referred to
as covariate shift and sample selection bias—albeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distribution, but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and the missing at random case in the sample selection bias model
allow for differences between the training and test distribution of instances; the conditional distri-
bution of the class variable given the instance is constant over training and test set.

In the covariate shift problem setting, a training sample is available in matrix XL with row
vectors x1, . . . ,xm. This training sample is governed by an unknown distribution p(x|λ). Vector y
with elements y1, . . . ,ym are the labels for training examples and are drawn according to an unknown
target concept p(y|x). In addition, unlabeled test data becomes available in matrix XT with rows

c©2009 Steffen Bickel, Michael Brückner and Tobias Scheffer.

Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia⇤
Google Research

yovadia@google.com

Emily Fertig⇤†

Google Research
emilyaf@google.com

Jie Ren†

Google Research
jjren@google.com

Zachary Nado
Google Research

znado@google.com

D Sculley
Google Research

dsculley@google.com

Sebastian Nowozin
Google Research

nowozin@google.com

Joshua V. Dillon
Google Research

jvdillon@google.com

Balaji Lakshminarayanan‡

DeepMind
balajiln@google.com

Jasper Snoek‡

Google Research
jsnoek@google.com

Abstract

Modern machine learning methods including deep learning have achieved great
success in predictive accuracy for supervised learning tasks, but may still fall short
in giving useful estimates of their predictive uncertainty. Quantifying uncertainty
is especially critical in real-world settings, which often involve input distributions
that are shifted from the training distribution due to a variety of factors including
sample bias and non-stationarity. In such settings, well calibrated uncertainty
estimates convey information about when a model’s output should (or should not)
be trusted. Many probabilistic deep learning methods, including Bayesian-and non-
Bayesian methods, have been proposed in the literature for quantifying predictive
uncertainty, but to our knowledge there has not previously been a rigorous large-
scale empirical comparison of these methods under dataset shift. We present a large-
scale benchmark of existing state-of-the-art methods on classification problems
and investigate the effect of dataset shift on accuracy and calibration. We find that
traditional post-hoc calibration does indeed fall short, as do several other previous
methods. However, some methods that marginalize over models give surprisingly
strong results across a broad spectrum of tasks.

1 Introduction

Recent successes across a variety of domains have led to the widespread deployment of deep
neural networks (DNNs) in practice. Consequently, the predictive distributions of these models are
increasingly being used to make decisions in important applications ranging from machine-learning
aided medical diagnoses from imaging (Esteva et al., 2017) to self-driving cars (Bojarski et al., 2016).
Such high-stakes applications require not only point predictions but also accurate quantification
of predictive uncertainty, i.e. meaningful confidence values in addition to class predictions. With
sufficient independent labeled samples from a target data distribution, one can estimate how well

⇤Equal contribution
†AI Resident
‡Corresponding authors

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A unifying view on dataset shift in classification

Jose G. Moreno-Torres a,!, Troy Raeder b, Rocı́o Alaiz-Rodrı́guez c, Nitesh V. Chawla b, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, Universidad de Granada, 18071 Granada, Spain
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
c Universidad de León, Dpto. de Ingenierı́a Eléctrica y de Sistemas, Campus de Vegazana, 24071 León, Spain

a r t i c l e i n f o

Article history:
Received 29 November 2010
Received in revised form
6 June 2011
Accepted 15 June 2011
Available online 18 July 2011

Keywords:
Dataset shift
Data fracture
Changing environments
Differing training and test populations
Covariate shift
Sample selection bias
Non-stationary distributions

a b s t r a c t

The field of dataset shift has received a growing amount of interest in the last few years. The fact that
most real-world applications have to cope with some form of shift makes its study highly relevant.
The literature on the topic is mostly scattered, and different authors use different names to refer to the
same concepts, or use the same name for different concepts. With this work, we attempt to present a
unifying framework through the review and comparison of some of the most important works in the
literature.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The machine learning community has analyzed data quality in
classification problems from different perspectives, including data
complexity [29,7], missing values [19,21,39], noise [11,64,58,38],
imbalance [52,27,53] and, as is the case with this paper, dataset
shift [4,44,14]. Dataset shift occurs when the testing (unseen)
data experience a phenomenon that leads to a change in the
distribution of a single feature, a combination of features, or the
class boundaries. As a result the common assumption that
the training and testing data follow the same distributions is
often violated in real-world applications and scenarios.

While the research area of dataset shift has received significant
attention in recent years (most of the work is published in the last
eight years), the field suffers from a lack of standard terminology.
Independent authors working under different conditions use
different terms, making it difficult to find and compare proposals
and studies in the field.

Contributions. The main goal of this work is to provide a
unifying framework through the review and analysis of some of
the most important publications in the field, comparing the
terminology used in each of them and the exact definitions that

were given. We present a framework that can be useful in future
research and, at the same time, provide researchers unfamiliar
with the topic a brief introduction to it. Our goal with this work is
to not only unify different methods and terminologies under a
taxonomical structure, but also provide a guide to a researcher as
well as a practitioner in machine learning and pattern recogni-
tion. We use the notation in [44] as the base for the comparisons.
We also present a brief summary of solutions proposed in the
literature.

The remainder of this paper is organized as follows: Some basic
notation is introduced in Section 2. In Section 3, an analysis of the
name given to the field of study is presented. Section 4 details the
terminology used for the different types of dataset shift that can
appear. Section 5 presents examples demonstrating the effect of
these shifts on classifier performance. An analysis of some common
causes of dataset shift is presented in Section 6. A brief summary of
the solutions proposed in the literature is shown in Section 7.
Finally, some conclusions are presented in Section 8.

2. Notation

In this work, we focus on the analysis of dataset shift in
classification problems. A classification problem is defined by:

! A set of features or covariates x.
! A target variable y (the class variable).
! A joint distribution Pðy,xÞ.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2011.06.019

! Corresponding author.
E-mail addresses: jose.garcia.mt@decsai.ugr.es (J.G. Moreno-Torres),

traeder@cse.nd.edu (T. Raeder), rocio.alaiz@unileon.es (R. Alaiz-Rodrı́guez),
nchawla@cse.nd.edu (N.V. Chawla), herrera@decsai.ugr.es (F. Herrera).

Pattern Recognition 45 (2012) 521–530

p p p

Shankar and Garcia et al.

Data Distribution Shift ¡

Journal of Machine Learning Research 10 (2009) 2137-2155 Submitted 4/08; Revised 7/09; Published 9/09

Discriminative Learning Under Covariate Shift

Steffen Bickel BICKEL@CS.UNI-POTSDAM.DE
Michael Brückner MIBRUECK@CS.UNI-POTSDAM.DE
Tobias Scheffer SCHEFFER@CS.UNI-POTSDAM.DE
University of Potsdam, Department of Computer Science
August-Bebel-Str. 89
14482 Potsdam, Germany

Editor: Bianca Zadrozny

Abstract
We address classification problems for which the training instances are governed by an input dis-
tribution that is allowed to differ arbitrarily from the test distribution—problems also referred to
as classification under covariate shift. We derive a solution that is purely discriminative: neither
training nor test distribution are modeled explicitly. The problem of learning under covariate shift
can be written as an integrated optimization problem. Instantiating the general optimization prob-
lem leads to a kernel logistic regression and an exponential model classifier for covariate shift. The
optimization problem is convex under certain conditions; our findings also clarify the relationship
to the known kernel mean matching procedure. We report on experiments on problems of spam
filtering, text classification, and landmine detection.
Keywords: covariate shift, discriminative learning, transfer learning

1. Introduction

Most machine learning algorithms are constructed under the assumption that the training data is
governed by the exact same distribution which the model will later be exposed to. In practice,
control over the data generation process is often less perfect. Training data may be obtained under
laboratory conditions that cannot be expected after deployment of a system; spam filters may be
used by individuals whose distribution of inbound emails diverges from the distribution reflected in
public training corpora; image processing systems may be deployed to foreign geographic regions
where vegetation and lighting conditions result in a distinct distribution of input patterns.

The case of distinct training and test distributions in a learning problem has been referred to
as covariate shift and sample selection bias—albeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distribution, but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and the missing at random case in the sample selection bias model
allow for differences between the training and test distribution of instances; the conditional distri-
bution of the class variable given the instance is constant over training and test set.

In the covariate shift problem setting, a training sample is available in matrix XL with row
vectors x1, . . . ,xm. This training sample is governed by an unknown distribution p(x|λ). Vector y
with elements y1, . . . ,ym are the labels for training examples and are drawn according to an unknown
target concept p(y|x). In addition, unlabeled test data becomes available in matrix XT with rows

c©2009 Steffen Bickel, Michael Brückner and Tobias Scheffer.

Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia⇤
Google Research

yovadia@google.com

Emily Fertig⇤†

Google Research
emilyaf@google.com

Jie Ren†

Google Research
jjren@google.com

Zachary Nado
Google Research

znado@google.com

D Sculley
Google Research

dsculley@google.com

Sebastian Nowozin
Google Research

nowozin@google.com

Joshua V. Dillon
Google Research

jvdillon@google.com

Balaji Lakshminarayanan‡

DeepMind
balajiln@google.com

Jasper Snoek‡

Google Research
jsnoek@google.com

Abstract

Modern machine learning methods including deep learning have achieved great
success in predictive accuracy for supervised learning tasks, but may still fall short
in giving useful estimates of their predictive uncertainty. Quantifying uncertainty
is especially critical in real-world settings, which often involve input distributions
that are shifted from the training distribution due to a variety of factors including
sample bias and non-stationarity. In such settings, well calibrated uncertainty
estimates convey information about when a model’s output should (or should not)
be trusted. Many probabilistic deep learning methods, including Bayesian-and non-
Bayesian methods, have been proposed in the literature for quantifying predictive
uncertainty, but to our knowledge there has not previously been a rigorous large-
scale empirical comparison of these methods under dataset shift. We present a large-
scale benchmark of existing state-of-the-art methods on classification problems
and investigate the effect of dataset shift on accuracy and calibration. We find that
traditional post-hoc calibration does indeed fall short, as do several other previous
methods. However, some methods that marginalize over models give surprisingly
strong results across a broad spectrum of tasks.

1 Introduction

Recent successes across a variety of domains have led to the widespread deployment of deep
neural networks (DNNs) in practice. Consequently, the predictive distributions of these models are
increasingly being used to make decisions in important applications ranging from machine-learning
aided medical diagnoses from imaging (Esteva et al., 2017) to self-driving cars (Bojarski et al., 2016).
Such high-stakes applications require not only point predictions but also accurate quantification
of predictive uncertainty, i.e. meaningful confidence values in addition to class predictions. With
sufficient independent labeled samples from a target data distribution, one can estimate how well

⇤Equal contribution
†AI Resident
‡Corresponding authors

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A unifying view on dataset shift in classification

Jose G. Moreno-Torres a,!, Troy Raeder b, Rocı́o Alaiz-Rodrı́guez c, Nitesh V. Chawla b, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, Universidad de Granada, 18071 Granada, Spain
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
c Universidad de León, Dpto. de Ingenierı́a Eléctrica y de Sistemas, Campus de Vegazana, 24071 León, Spain

a r t i c l e i n f o

Article history:
Received 29 November 2010
Received in revised form
6 June 2011
Accepted 15 June 2011
Available online 18 July 2011

Keywords:
Dataset shift
Data fracture
Changing environments
Differing training and test populations
Covariate shift
Sample selection bias
Non-stationary distributions

a b s t r a c t

The field of dataset shift has received a growing amount of interest in the last few years. The fact that
most real-world applications have to cope with some form of shift makes its study highly relevant.
The literature on the topic is mostly scattered, and different authors use different names to refer to the
same concepts, or use the same name for different concepts. With this work, we attempt to present a
unifying framework through the review and comparison of some of the most important works in the
literature.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The machine learning community has analyzed data quality in
classification problems from different perspectives, including data
complexity [29,7], missing values [19,21,39], noise [11,64,58,38],
imbalance [52,27,53] and, as is the case with this paper, dataset
shift [4,44,14]. Dataset shift occurs when the testing (unseen)
data experience a phenomenon that leads to a change in the
distribution of a single feature, a combination of features, or the
class boundaries. As a result the common assumption that
the training and testing data follow the same distributions is
often violated in real-world applications and scenarios.

While the research area of dataset shift has received significant
attention in recent years (most of the work is published in the last
eight years), the field suffers from a lack of standard terminology.
Independent authors working under different conditions use
different terms, making it difficult to find and compare proposals
and studies in the field.

Contributions. The main goal of this work is to provide a
unifying framework through the review and analysis of some of
the most important publications in the field, comparing the
terminology used in each of them and the exact definitions that

were given. We present a framework that can be useful in future
research and, at the same time, provide researchers unfamiliar
with the topic a brief introduction to it. Our goal with this work is
to not only unify different methods and terminologies under a
taxonomical structure, but also provide a guide to a researcher as
well as a practitioner in machine learning and pattern recogni-
tion. We use the notation in [44] as the base for the comparisons.
We also present a brief summary of solutions proposed in the
literature.

The remainder of this paper is organized as follows: Some basic
notation is introduced in Section 2. In Section 3, an analysis of the
name given to the field of study is presented. Section 4 details the
terminology used for the different types of dataset shift that can
appear. Section 5 presents examples demonstrating the effect of
these shifts on classifier performance. An analysis of some common
causes of dataset shift is presented in Section 6. A brief summary of
the solutions proposed in the literature is shown in Section 7.
Finally, some conclusions are presented in Section 8.

2. Notation

In this work, we focus on the analysis of dataset shift in
classification problems. A classification problem is defined by:

! A set of features or covariates x.
! A target variable y (the class variable).
! A joint distribution Pðy,xÞ.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2011.06.019

! Corresponding author.
E-mail addresses: jose.garcia.mt@decsai.ugr.es (J.G. Moreno-Torres),

traeder@cse.nd.edu (T. Raeder), rocio.alaiz@unileon.es (R. Alaiz-Rodrı́guez),
nchawla@cse.nd.edu (N.V. Chawla), herrera@decsai.ugr.es (F. Herrera).

Pattern Recognition 45 (2012) 521–530

p p p

Shankar and Garcia et al.

Frequently Retrain L

Why did we start training daily? As far as
I’m aware, we wanted to start simple—we
could just have a single batch job that pro-
cesses new data and we wouldn’t need to
worry about separate retraining schedules.
You don’t really need to worry about if your
model has gone stale if you’re retraining it
every day. (P14)

Why did we start training daily? As far as
I’m aware, we wanted to start simple—we
could just have a single batch job that pro-
cesses new data and we wouldn’t need to
worry about separate retraining schedules.
You don’t really need to worry about if
your model has gone stale if you’re re-
training it every day. (P14)

Shankar and Garcia et al.

Frequently Retrain L

Why did we start training daily? As far as
I’m aware, we wanted to start simple—we
could just have a single batch job that pro-
cesses new data and we wouldn’t need to
worry about separate retraining schedules.
You don’t really need to worry about if your
model has gone stale if you’re retraining it
every day. (P14)

Why did we start training daily? As far as
I’m aware, we wanted to start simple—we
could just have a single batch job that pro-
cesses new data and we wouldn’t need to
worry about separate retraining schedules.
You don’t really need to worry about if
your model has gone stale if you’re re-
training it every day. (P14)

Shankar and Garcia et al.

Maintain Old and Simple Fallback Versions i

If the production model drops and the calibration
model is still performing within a [specified] range,
we’ll fall back to the calibration model until some-
one will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less economic
model and have to just cut the
losses. (P18)

If the production model drops and the calibra-
tion model is still performing within a [specified]
range, we’ll fall back to the calibration model
until someone will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less eco-
nomic model and have to just
cut the losses. (P18)

Shankar and Garcia et al.

Maintain Old and Simple Fallback Versions i

If the production model drops and the calibration
model is still performing within a [specified] range,
we’ll fall back to the calibration model until some-
one will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less economic
model and have to just cut the
losses. (P18)

If the production model drops and the calibra-
tion model is still performing within a [specified]
range, we’ll fall back to the calibration model
until someone will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less eco-
nomic model and have to just
cut the losses. (P18)

Shankar and Garcia et al.

Maintain Old and Simple Fallback Versions i

If the production model drops and the calibration
model is still performing within a [specified] range,
we’ll fall back to the calibration model until some-
one will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less economic
model and have to just cut the
losses. (P18)

If the production model drops and the calibra-
tion model is still performing within a [specified]
range, we’ll fall back to the calibration model
until someone will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less eco-
nomic model and have to just
cut the losses. (P18)

Shankar and Garcia et al.

Maintain Old and Simple Fallback Versions i

If the production model drops and the calibration
model is still performing within a [specified] range,
we’ll fall back to the calibration model until some-
one will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less economic
model and have to just cut the
losses. (P18)

If the production model drops and the calibra-
tion model is still performing within a [specified]
range, we’ll fall back to the calibration model
until someone will fix the production model. (P19)

It’s important to keep some
model up and running, even
if we switch to a less eco-
nomic model and have to just
cut the losses. (P18)

Shankar and Garcia et al.

Validate Inputs and Outputs I

Set alerts when data is corrupted, e.g.,

• Hard constraints/bounds for features (P2)

• “Common-sense checks” like nonnegativity (P16)

• Schema/type checks (P8)

Example Feature: User Age
✓ < 125
✓ Nonnegative
✓ Integer

Shankar and Garcia et al.

Sustaining Model Performance ¢

Myths

p Build models “robust” to
data distribution shift
p Always serve the latest model’s
predictions
p Validate only the outputs
p Set and forget

Tips

✓ Frequently retrain models on
latest data
✓ Maintain simple models and
heuristics for rollback
✓ Validate inputs and outputs
✓ On-call rotations and SLAs

Shankar and Garcia et al.

Sustaining Model Performance ¢

Myths

p Build models “robust” to
data distribution shift
p Always serve the latest model’s
predictions
p Validate only the outputs
p Set and forget

Tips

✓ Frequently retrain models on
latest data
✓ Maintain simple models and
heuristics for rollback
✓ Validate inputs and outputs
✓ On-call rotations and SLAs

Shankar and Garcia et al.

Outline

A New Wave of Software Engineering

Characterizing the Production ML Workflow

MLOps Practices

MLOps Pain Points

Current and Future Work

Shankar and Garcia et al.

Dev-Prod Environment Mismatch �

• Data leakage

• Jupyter notebook usage

• Code reviews

Shankar and Garcia et al.

Dev-Prod Environment Mismatch �

I used to see a lot of people complaining that
model developers don’t follow software engineer-
ing [practices]. At this point, I’m feeling more con-
vinced that they don’t follow software engineering
[practices]—[not] because they’re lazy, [but be-
cause software engineering practices are] contra-
dictory to the agility of analysis and exploration.
(P6)

I used to see a lot of people complaining that
model developers don’t follow software engineer-
ing [practices]. At this point, I’m feeling more con-
vinced that they don’t follow software engineer-
ing [practices]—[not] because they’re lazy, [but
because software engineering practices are]
contradictory to the agility of analysis and ex-
ploration. (P6)

Shankar and Garcia et al.

Dev-Prod Environment Mismatch �

I used to see a lot of people complaining that
model developers don’t follow software engineer-
ing [practices]. At this point, I’m feeling more con-
vinced that they don’t follow software engineering
[practices]—[not] because they’re lazy, [but be-
cause software engineering practices are] contra-
dictory to the agility of analysis and exploration.
(P6)

I used to see a lot of people complaining that
model developers don’t follow software engineer-
ing [practices]. At this point, I’m feeling more con-
vinced that they don’t follow software engineer-
ing [practices]—[not] because they’re lazy, [but
because software engineering practices are]
contradictory to the agility of analysis and ex-
ploration. (P6)

Shankar and Garcia et al.

Data Validation: Alert Fatigue I

• Many alerts triggered even
when ML performance is fine

• On-call rotations are scary!

Shankar and Garcia et al.

Data Validation: Alert Fatigue J

You typically ignore most alerts...I guess on record
I’d say 90% of them aren’t immediate. You just
have to acknowledge them [internally], like just be
aware that there is something happening. (P18)

You typically ignore most alerts...I guess on
record I’d say 90% of them aren’t immediate. You
just have to acknowledge them [internally], like
just be aware that there is something happening.
(P18)

Shankar and Garcia et al.

Data Validation: Alert Fatigue J

You typically ignore most alerts...I guess on record
I’d say 90% of them aren’t immediate. You just
have to acknowledge them [internally], like just be
aware that there is something happening. (P18)

You typically ignore most alerts...I guess on
record I’d say 90% of them aren’t immediate. You
just have to acknowledge them [internally], like
just be aware that there is something happening.
(P18)

Shankar and Garcia et al.

Taming the Long Tail of ML Bugs q

• “I just sort of poked around
until, at some point, I figured
[it] out.” (P16)

• Slicing and dicing data

• Paranoia induced by
debugging trauma

Shankar and Garcia et al.

Taming the Long Tail of ML Bugs q

ML [bugs] don’t get caught by tests or production
systems and just silently cause errors [that man-
ifest as] slight reductions in performance. This is
why [you] need to be paranoid when you’re writing
ML code. (P1)

ML [bugs] don’t get caught by tests or production
systems and just silently cause errors [that man-
ifest as] slight reductions in performance. This
is why [you] need to be paranoid when you’re
writing ML code. (P1)

Shankar and Garcia et al.

Taming the Long Tail of ML Bugs q

ML [bugs] don’t get caught by tests or production
systems and just silently cause errors [that man-
ifest as] slight reductions in performance. This is
why [you] need to be paranoid when you’re writing
ML code. (P1)

ML [bugs] don’t get caught by tests or production
systems and just silently cause errors [that man-
ifest as] slight reductions in performance. This
is why [you] need to be paranoid when you’re
writing ML code. (P1)

Shankar and Garcia et al.

Outline

A New Wave of Software Engineering

Characterizing the Production ML Workflow

MLOps Practices

MLOps Pain Points

Current and Future Work

Shankar and Garcia et al.

MLOps Research Roadmap

HCI Data Systems

Operationalizing Machine Learning: An Interview Study
Shreya Shankar⇤, Rolando Garcia⇤, Joseph M. Hellerstein, Aditya G. Parameswaran

University of California, Berkeley
{shreyashankar,rogarcia,hellerstein,adityagp}@berkeley.edu

⇤Co-�rst authors

ABSTRACT
Organizations rely on machine learning engineers (MLEs) to opera-
tionalize ML, i.e., deploy and maintain ML pipelines in production.
The process of operationalizing ML, or MLOps, consists of a contin-
ual loop of (i) data collection and labeling, (ii) experimentation to
improve ML performance, (iii) evaluation throughout a multi-staged
deployment process, and (iv) monitoring of performance drops in
production. When considered together, these responsibilities seem
staggering—how does anyone do MLOps, what are the unaddressed
challenges, and what are the implications for tool builders?

We conducted semi-structured ethnographic interviews with
18 MLEs working across many applications, including chatbots,
autonomous vehicles, and �nance. Our interviews expose three
variables that govern success for a production ML deployment: Ve-
locity, Validation, and Versioning. We summarize common practices
for successful ML experimentation, deployment, and sustaining pro-
duction performance. Finally, we discuss interviewees’ pain points
and anti-patterns, with implications for tool design.

1 INTRODUCTION
As Machine Learning (ML) models are increasingly incorporated
into software, a nascent sub-�eld called MLOps (short for ML Op-
erations) has emerged to organize the “set of practices that aim
to deploy and maintain ML models in production reliably and e�-
ciently” [4, 77]. It is widely agreed that MLOps is hard. Anecdotal re-
ports claim that 90% of ML models don’t make it to production [76];
others claim that 85% of ML projects fail to deliver value [69].

At the same time, it is unclear why MLOps is hard. Our present-
day understanding of MLOps is limited to a fragmented landscape of
white papers, anecdotes, and thought pieces [14, 18, 20, 21, 34, 45],
as well as a cottage industry of startups aiming to address MLOps
issues [27]. Early work by Sculley et al. attributes MLOps chal-
lenges to “technical debt”, due to which there is “massive ongoing
maintenance costs in real-world ML systems” [64]. Most successful
ML deployments seem to involve a “team of engineers who spend a
signi�cant portion of their time on the less glamorous aspects of ML
like maintaining and monitoring ML pipelines” [54]. Prior work has
studied general practices of data analysis and science [30, 49, 62, 82],
without considering MLOps challenges of productionizing models.

There is thus a pressing need to bring clarity to MLOps, specif-
ically in identifying what MLOps typically involves—across or-
ganizations and ML applications. A richer understanding of best
practices and challenges in MLOps can surface gaps in present-day
processes and better inform the development of next-generation
tools. Therefore, we conducted a semi-structured interview study of
ML engineers (MLEs), each of whom has worked on ML models in
production. We sourced 18 participants from di�erent organizations
and applications (Table 1) and asked them open-ended questions to
understand their work�ow and day-to-day challenges.

Data Collection Experimentation Evaluation and
Deployment

Monitoring
and Response

Figure 1: Routine tasks in the ML engineering work�ow.

We �nd that MLEs perform four routine tasks, shown in Fig-
ure 1: (i) data collection, (ii) experimentation, (iii) evaluation and
deployment, and (iv) monitoring and response. Across tasks, we
observe three variables that dictate success for a production ML
deployment: Velocity, Validation, and Versioning.1 We describe
common MLOps practices, grouped under overarching �ndings:
ML engineering is very experimental in nature (Section 4.3).
As mentioned earlier, various articles claim that it is a problem for
90% of models to never make it to production [76], but we �nd that
this statistic is misguided. The nature of constant experimentation
is bound to create many versions, a small fraction of which (i.e. “the
best of the best”) will make it to production. Thus it is bene�cial
to prototype ideas quickly, by making minimal changes to existing
work�ows, and demonstrate practical bene�ts early—so that bad
models never make it far.
Operationalizing model evaluation requires an active orga-
nizational e�ort (Section 4.4). Popular model evaluation “best
practices” do not do justice to the rigor with which organiza-
tions think about deployments: they generally focus on using one
typically-static held-out dataset to evaluate the model on [38] and
a single ML metric choice (e.g., precision, recall) [1, 2]. We �nd that
MLEs invest signi�cant resources in maintaining multiple up-to-
date evaluation datasets and metrics over time—especially ensuring
that data sub-populations of interest are adequately covered.
Non-ML rules and human-in-the-loop practices keep mod-
els reliable in production (Section 4.5). We �nd that MLEs pre-
fer simple ideas, even if it means handling multiple versions: for
example, rather than leverage advanced techniques to minimize
distribution shift errors [15, 83], MLEs would simply create new
models, retrained on fresh data. MLEs ensured that deployments
were reliable via strategies such as on-call rotations, model roll-
backs, or elaborate rule-based guardrails to avoid incorrect outputs.

In Section 5, we discuss recurring MLOps challenges across all
tasks. We express these pain points as tensions and synergies be-
tween our three “V” variables—for example, undocumented “tribal
knowledge” about pipelines (Section 5.2.4) demonstrates a tension
between velocity (i.e., quickly changing the pipeline in response
to a bug) and well-executed versioning (i.e., documenting every
change). We conclude the description of each pain point with a
discussion of opportunities for future tools.

1Our Three Vs of MLOps aren’t meant to be confused with the Three Vs of Big Data
(Volume, Variety, Velocity) [61]. The �rst authors learned of the Big Data Vs after draft-
ing the MLOps Vs and were surprised to �nd similarities around volume/versioning
and velocity.

ar
X

iv
:2

20
9.

09
12

5v
1

 [c
s.S

E]
 1

6
Se

p
20

22

Shankar et al. [2022a] (under review)

Bolt-on, Compact, and Rapid
Program Slicing for Notebooks [Technical Report]

Shreya Shankar†1, Stephen Macke†2, Sarah Chasins1, Andrew Head3, Aditya Parameswaran1
1University of California, Berkeley {shreyashankar,schasins,adityagp}@berkeley.edu

2Una�liated stephen.macke@gmail.com
3University of Pennsylvania head@seas.upenn.edu

†Equal contribution (order determined by coin �ip)

ABSTRACT
Computational notebooks are commonly used for iterative work-
�ows, such as in exploratory data analysis. This process lends itself
to the accumulation of old code and hidden state, making it hard
for users to reason about the lineage of, e.g., plots depicting in-
sights or trained machine learning models. One way to reason
about code used to generate various notebook data artifacts is to
compute a program slice, but traditional static approaches to slic-
ing can be both inaccurate (failing to contain relevant code for
artifacts) and conservative (containing unnecessary code for an
artifacts). We present ��������, a dynamic slicer optimized for the
notebook setting whose instrumentation for resolving dynamic data
dependencies is both bolt-on (and therefore portable) and switchable
(allowing it to be selectively disabled in order to reduce instrumen-
tation overhead). We demonstrate ��������’s ability to construct
small and accurate backward slices (i.e., historical cell dependencies)
and forward slices (i.e., cells a�ected by the "rerun" of an earlier cell),
thereby improving reproducibility in notebooks and enabling faster
reactive re-execution, respectively. Comparing �������� with a
static slicer on 374 real notebook sessions, we found that ��������
�lters out far more super�uous program statements while main-
taining slice correctness, giving slices that are, on average, 66% and
54% smaller for backward and forward slices, respectively.

1 INTRODUCTION
Computational notebooks, and Project Jupyter [37] in particular,
have revolutionized the work�ows of data scientists [48, 49]. Note-
books admit a �exible execution model that segments units of com-
putation into so-called “cells” that can easily be back-referenced for
editing, duplication, or reordering, with intermediate program state
persisted to memory between subsequent cell executions. This it-
erative cell-based execution modality is ideal for rapid prototyping
and testing of hypotheses, a cornerstone of typical data science
work, and has led to their extensive usage—as of October 2020,
there were nearly 10 million notebooks available on GitHub [24].
Notebooks are Messy. The popularity of notebooks has come
with increased scrutiny; as such, notebooks now have a number
of well-documented disadvantages, related primarily to their ten-
dency to accumulate cruft in the form of both visible notebook code
[31, 35, 53] and invisible in-memory program state [22]. Data sci-
ence work�ows, in particular, tend to be exploratory in nature [35].
These �aws can make execution behavior in notebooks di�cult to
reason about and cause misleading or incorrect �ndings, leading
to confusion during ad-hoc exploration, prototyping, and iteration.
Organizing Notebook Iteration with Program Slicing. To ad-
dress notebook shortcomings, recent work has developed approaches

based on backward program slicing to gather code in messy note-
books [27, 33], thereby making it easier for data scientists to retrace
their steps. Traditionally applied to program debugging [7, 61],
program slicing determines a (typically smaller) subset of program
statements that a�ect some other program statement(s). In the con-
text of notebooks, backward program slicing captures the lineage
required to reproduce the outputs of one or more cells; e.g., to
“gather” code that was written in an ad-hoc fashion, potentially
out-of-order across multiple notebook cells, into a clean script that
reliably reproduces the data scientist’s analyses. The more compact
this slice is, the smaller the lineage, meaning it is more e�cient to
re-execute for reproducibility while preserving accuracy.

Forward program slicing also has applications in data science
work�ows in computational notebooks. In the context of notebooks,
a forward program slice determines the set of cells that are a�ected
by a given cell, and can be combined with other analysis techniques
to automatically (or reactively [14, 40, 44, 58]) re-execute all the
cells that could be a�ected (via data dependencies) by some other
cell, ensuring that cells do not become stale. A reactivity tool for
notebooks can be thought of as performing a form of materialized
view maintenance — speci�cally, “refreshing" the notebook after
an earlier cell is rerun by re-executing dependent cells. Such reac-
tivity features help to push the burden of tracking what cells have
become stale away from the user and down into the notebook ker-
nel. This feature is particularly helpful for data science work�ows,
which can involve toggling many values (e.g., hyperparameters)
and re-executing what might be dozens of downstream data trans-
formation dependencies. Once again, correctness (i.e., making sure
we are rerunning everything a�ected) while minimizing slice size
(i.e.,only rerunning what is needed) is key to ensuring interactivity
during exploratory data analysis.
Notebook-Centric Slicing: Challenges. Backward and forward
slicing can help automate away some of the messiness inherent
in notebook-resident data science work�ows and thereby improve
downstream reproducibility. Ideally, slices should be as small as
possible in order to eliminate extraneous computation, while pre-
serving correctness of the underlying program. However, computa-
tion of slices that are simultaneous small and accurate, and without
noticeable degradation of existing notebook behavior and perfor-
mance, is di�cult to achieve in practice. We now outline challenges
we faced while developing ��������, a state-of-the-art dynamic
slicer optimized speci�cally for the notebook setting, along with
contributions that addressed each challenge.
Challenge 1: Small and accurate program slices. Backward slic-
ing was �rst explored in the context of code gathering in note-
books by Head et al. [27]. However, it is not di�cult to construct
cases wherein the static slicing technique used in [27] will yield

Shankar et al. [2022b] (VLDB 2023)

Towards Observability for
Production Machine Learning Pipelines

[Vision Paper]

Shreya Shankar
UC Berkeley

shreyashankar@berkeley.edu

Aditya G. Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT
Software organizations are increasingly incorporating machine learning
(ML) into their product o�erings, driving a need for new data manage-
ment tools. Many of these tools facilitate the initial development of ML
applications, but sustaining these applications post-deployment is di�cult
due to lack of real-time feedback (i.e., labels) for predictions and silent
failures that could occur at any component of the ML pipeline (e.g., data
distribution shift or anomalous features). We propose a new type of data
management system that o�ers end-to-end observability, or visibility into
complex system behavior, for deployed ML pipelines through assisted (1)
detection, (2) diagnosis, and (3) reaction to ML-related bugs. We describe
new research challenges and suggest preliminary solution ideas in all three
aspects. Finally, we introduce an example architecture for a “bolt-on” ML
observability system, or one that wraps around existing tools in the stack.

1 INTRODUCTION
Organizations are devoting increasingly more resources towards de-
veloping and deploying applications powered by machine learning
(ML). ML applications rely on pipelines that span multiple heteroge-
neous stages or components, such as feature generation and model
training, requiring specialized data management tools. Most work
in data management for ML concentrates on speci�c components,
e.g., preprocessing [1, 2], or model training [3, 4, 5, 6]. Additionally,
some industry solutions have garnered widespread adoption by
handling data management issues that stem from experimenting
with models [7, 8].

However, there are many unaddressed challenges in sustaining
ML pipelines once built: maintaining, debugging, and improving
them after the initial deployment. Various best practices for “pro-
duction ML” and failure case studies highlight the dire need for ML
sustainability [9, 10]. We posit that for sustainability, ML practi-
tioners should be able to (1) detect, (2) diagnose, and (3) react to
bugs post-deployment. Compared to traditional software systems,
which typically only break when there are infrastructure issues,
ML pipelines can also fail unpredictably due to data issues—and
therefore are uniquely challenging to sustain in all three aspects.
Bug Detection: Hard Due to Feedback Delays. It is well-known
that data distributions change or shift over time, causing model
performance to drop [11, 12]. Detecting performance drops post-
deployment is challenging due to lack of “ground-truth” data: in
many production ML systems, feedback on predictions, or labels,
can arrive at a later time. Furthermore, in many pipelines, only a
few labels arrive (e.g., labelers manually annotate some predictions,
or only a handful of predicted outputs are displayed to the user).
As a result, practitioners are unable to monitor simple ML metrics
such as accuracy in real-time. As an alternative, end-to-end ML
frameworks such as TFX [13] and Sagemaker [14] monitor internal
pipeline state or health via distance metrics [15] over distributions
of ML features and outputs over time. These proxies often produce

too many false positives and thus do not accurately determine when
models are underperforming, as we will discuss further in Section 2.
Bug Diagnosis: Hard Due to Pipeline Complexity. Even if a
failure is con�dently detected, the complex, highly intertwined
nature of components in the ML pipeline makes it hard to under-
stand where bugs could lie. For production ML pipelines, “changing
anything changes everything (CACE),” causing predictions to vary
unpredictably [10]. Consequently, production ML uniquely suf-
fers from silent pipeline bugs, such as corrupted or stale subsets
of features. Practitioners painstakingly enumerate and maintain
(i.e., tune) data quality constraints for component inputs and out-
puts [16, 17], motivating automatic speci�cation and maintenance
of precise constraints at the component level.
Bug Fixes: Hard Due to No Obviously Correct Answers. Even
if users can successfully pinpoint all pipeline bugs, there can be
many ways to bring model performance back up to a desirable
level, and e�ectiveness depends on the nature of the data or task.
For example, di�erent components, when �xed, can cause di�erent
magnitudes of improvement in ML performance. Users often have
no sense of what to �x �rst, relative to the costs in resources and
time.
ML Observability. The challenges outlined above motivate the
need for observability [18], or “better visibility into understanding
the complex behavior of software using telemetry collected ... at run
time” [19], tailored for ML pipelines. Observability encompasses
more than just monitoring prede�ned metrics that capture holistic
system health (i.e., known-unknowns)—it also allows practitioners
to ask questions about how systems behaved on historical out-
puts (i.e., unknown-unknowns), or perform “needle-in-a-haystack”
queries. The north star for software observability systems is to give
users the power to ask new questions of historical system behavior
without gathering new data [20].
Contributions. In this paper, we discuss unaddressed research
challenges in ML observability as a call-to-arms for the database
community to contribute to this nascent research direction. We
propose the concept of a “bolt-on” observability system for ML
pipelines—one that does not require users to rewrite all their code to
use a speci�c framework. ML application developers assemble their
pipelines in an ad-hoc manner employing a myriad of tools along
the way, and our bolt-on observability system must interoperate
with such heterogeneous pipelines. For example, practitioners may
use a Hive metastore to catalog raw data [21], Deequ for data
validation [17], and Weights & Biases for experiment tracking [8].

For our bolt-on observability system to address bug detection,
diagnosis, and �xing needs, we propose a three-pronged approach:
(1) Monitoring approximations of top-line, i.e., business-critical, ML
metrics to alert users of ML performance drops even when there
may not be real-time labels. In Section 3.3, we propose automated
techniques that rely on lightweight proxies to bin predictions and

ar
X

iv
:2

10
8.

13
55

7v
3

 [c
s.S

E]
 1

5
Ju

l 2
02

2

Shankar and Parameswaran

[2022] (VLDB 2023)

Hindsight Logging across Model Training Versions
Rolando Garcia

UC Berkeley
rogarcia@berkeley.edu

Anusha Dandamudi
UC Berkeley

adandamudi@berkeley.edu

Gabriel Matute
UC Berkeley

gmatute@berkeley.edu

Joseph Gonzalez
UC Berkeley

jegonzal@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Koushik Sen
UC Berkeley

ksen@berkeley.edu

ABSTRACT
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui o�cia deserunt mollit anim id est laborum. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in repre-
henderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
o�cia deserunt mollit anim id est laborum. Ut enim ad minim ve-
niam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident, sunt in culpa qui o�cia
deserunt mollit anim id est laborum.

PVLDB Reference Format:
Rolando Garcia, Anusha Dandamudi, Gabriel Matute, Joseph Gonzalez,
Joseph M. Hellerstein, and Koushik Sen. Hindsight Logging across Model
Training Versions. PVLDB, V(I): pp-pp, 2022. doi:10.14777/3433333.3436925

1 INTRODUCTION
Enterprise solutions for machine learning are marketed to train
and score hundreds of thousands of models in a single day [1, 13].
As businesses grow and move to operationalize machine learning,
they confront increasingly more cumbersome data management
problems arising from the many versions and big metadata (i.e.
context) of model training at scale [9, 19]. In this paper, we de�ne the
structure and characterize the content of training context—across
versions—of predictive models (Sec 2), posit a relational data model
for querying and maintaining such context (Sec 3), and present
hindsight featurization, a novel approach and implementation for
back-�lling additional context, from the beginning of history, as
needed to answer ad-hoc queries about training (Sec 4-5).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. V, No. I
ISSN 2150–8097.
doi:10.14777/3433333.3436925

1.1 Model Training Histories & Featurization
At every step of exploration, model developers routinely track
and visualize time series data to diagnose common training prob-
lems such as exploding/vanishing gradients [11], dead ReLUs [14],
and reward hacking [3]. Model developers use state-of-the-art log-
gers specialized to machine learning (e.g. TensorBoard [10], and
WandB [2]) to e�ciently trace and visualize data as it changes over
time. The following are common examples of times series data
logged during the execution of model training:

• Parameters & Metrics: The loss, accuracy, learning rate,
and other values as they change over time.

• Tensor Histograms: Histograms of weights, gradients, ac-
tivations, and other tensors as they change over time.

• Images & Overlays: Segmentation masks, bounding boxes,
embeddings, and other transformed images as they change
over time.

1.1.1 Histories. In addition to generating large volumes of data per
run, model developers routinely sweep hundreds of training ver-
sions in the course of development [18, 19]. In this paper, we de�ne
“model training history” as all the execution data of model training
across versions. Beyond diagnostics, model training histories are
used for model tuning, experiment management, and continuous
integration.

1.1.2 Featurization. Logging libraries for ML capture enough aux-
iliary metadata when they intercept runtime values, that we can
consider them featurization tools. For example, when model devel-
opers log the training loss over time, the logging statement they
invoke also collects information such as the timestamp of the run,
the absolute path of the main script, the epoch and step counts,
and the name of the value. All this metadata forms the address of
the value, and every such value is a feature of model training. We
defer a more formal treatment of training features until Section 2,
but for now, it su�ces to say that the data written by ML loggers
(e.g. Weights & Biases) is automatically prepared for entry into
relational tables, and model developers are familiar with training
featurization.

1.2 Hindsight Featurization: Scenarios
Next, we look at three di�erent scenarios to illustrate the rich
diversity of queries over training histories:

• This data looks wrong! Alice logs the segmentation masks
for a sample of data points, as they change during training.
She worries that the masks appear shifted, and she wants to

Hindsight logging in model

training (in progress)

Moving Fast With Broken Data
����: an Automatic Data Validation System for ML Pipelines

Shreya Shankar†1, Labib Fawaz2, Karl Gyllstrom2, Aditya G. Parameswaran1
1University of California, Berkeley {shreyashankar,adityagp}@berkeley.edu

2Meta {labibfawaz,gylls}@fb.com
†Work performed while �rst author was at Meta

ABSTRACT
At Meta, we have many machine learning (ML) models in produc-
tion, each of which automatically retrain on large datasets that
often have a few features corrupted (due to engineering bugs). Con-
sequently, models will automatically retrain on erroneous partitions
of data, motivating a system to detect data issues and block retrain-
ing quickly—before downstream ML models regress. This system
is hard to build: in a world where some data is almost always cor-
rupted, which partitions are corrupted enough to gate retraining?
Gating too often yields stale model snapshots in production; gating
too little yields broken model snapshots in production.

In this paper, we present unique challenges associated with data
validation for ML pipelines at industrial scale. We introduce ����,
our high-precision and high-recall alerting system that pro�les
continually-changing training datasets in production ML pipelines.
���� identi�es data issues that cause downstream ML model per-
formance drops through intra-feature, inter-feature, and temporal
data validation. We discuss two case studies on Meta’s ML pipelines,
demonstrating ����’s performance and analyzing why baseline
automatic data validation methods achieve poor precision.

1 INTRODUCTION
Meta’s machine learning (ML) infrastructure powers tens of thou-
sands of production ML pipelines, or data pipelines consisting of
one or more ML models that generate predictions for downstream
applications (e.g., ad recommendation, feed ranking, content mod-
eration). Since these pipelines must continuously serve predictions
over time, even as data changes, their corresponding models train
in recurring mode—i.e., they frequently retrain, several times a day,
on a recent set of timestamped partitions of data. A partition for
an hour of features (i.e., input data to the model) can be as large as
several petabytes.

Recurring mode, at our scale, can be a headache. It is almost
always the case that engineering bugs (outside model developers’
control) corrupt some features. For example, suppose a new release
of the Instagram app doesn’t respond to the mute button and thus
corrupts audio features for a recommendation model. Recurring
mode will create a new, broken model snapshot (trained on an
erroneous partition of data) and replace the existing production
snapshot. Unfortunately, the production impact of corruption isn’t
realized until the snapshot is published: in our example, if the
corruption is large enough, the model’s overall click-through rate
(CTR) will decrease until an engineer �xes the audio bug, which
could take several hours or days.

Ideally, we could intervene at the model retraining stage and
block the promotion of a model snapshot if necessary. Our team,

⌧1

⌧2

⌧3

⌧4

Decorrelation
(Inter-feature validation)

completeness 0.8
`: 0.12
f : 0.3

unique vals: 2.2
top frequency: -1.3

Wass-1: -1.3

Anomaly Matrix Creation
(Intra-feature validation)

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.4
...
�0.4

...
0.2

...
0.6

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 3

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.6
...
�0.7

...
0.3

...
0.2

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 2

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.8
...
�0.9

...
3.3

...
0.4

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 1

Alert Generation
(Temporal validation)

feature completeness . . .

f1 0.1 ...f2 6.5
...

...
...

...
...

...

Feature Drill-Down
(Debugging)

Figure 1: ���� system components

AI Data Integrity (AIDI), has two goals: (1) to help ML engineers at
Meta debug ML pipelines when real-time ML pipeline performance
drops, and (2) to detect issues in training datasets across Meta
before downstream bugs occur. We’ve made signi�cant progress
in (1) with our �agship product that summarizes training dataset
partitions with statistics such as the mean, standard deviation, top
: values, and completeness (i.e., fraction of non-null values) for
each feature and model prediction. Our clients, the ML engineers
responsible for ensuring that ML pipeline performance stays high
over time, can query these summaries to debug performance drops.
However, achieving (2), or automatically validating data to detect
issues before they occur, has been an ongoing challenge. How do we
place an alert layer on top of the statistics we collect? In building
an automatic data validation system, we have to deal with the
following requirements:

(1) High-precision and high-recall alerts: Engineers explic-
itly require a minimum recall (otherwise the system will be
useless) and implicitly require a minimum precision (oth-
erwise they will not listen to the system). At �rst, we set
alerts on completeness drops—i.e., if a feature’s complete-
ness drops by more than 30%, our client gets noti�ed—but
this method produced too many false positive alerts, and
our clients thus silenced them. Moreover, clients are respon-
sible for ML pipelines consisting of features that they don’t
always create (due to organizational turnover). We found
that they initially spent signi�cant e�orts �nding a good
threshold (e.g., 30%) for alerts on completeness, then aban-
doned the approach because it’s impractical to enumerate
and carefully tune constraints and thresholds for features
they may not have context about.

(2) Ease of onboarding and use: When ML teams request
our data validation services, we must roll out a solution
immediately rather than collect data over weeks or months
(i.e., annotations of ground-truth corruptions) to tailor a
validation system speci�c to their data or pipelines. Clients
need a system that produces alerts quickly. Moreover, alerts
should be interpretable—i.e., map to a broken feature or set

Automatic data validation (in progress)

Mining feedback delays and estimating

unlabeled accuracy (in progress)

Shankar and Garcia et al.

MLOps Research Roadmap

HCI Data Systems

Operationalizing Machine Learning: An Interview Study
Shreya Shankar⇤, Rolando Garcia⇤, Joseph M. Hellerstein, Aditya G. Parameswaran

University of California, Berkeley
{shreyashankar,rogarcia,hellerstein,adityagp}@berkeley.edu

⇤Co-�rst authors

ABSTRACT
Organizations rely on machine learning engineers (MLEs) to opera-
tionalize ML, i.e., deploy and maintain ML pipelines in production.
The process of operationalizing ML, or MLOps, consists of a contin-
ual loop of (i) data collection and labeling, (ii) experimentation to
improve ML performance, (iii) evaluation throughout a multi-staged
deployment process, and (iv) monitoring of performance drops in
production. When considered together, these responsibilities seem
staggering—how does anyone do MLOps, what are the unaddressed
challenges, and what are the implications for tool builders?

We conducted semi-structured ethnographic interviews with
18 MLEs working across many applications, including chatbots,
autonomous vehicles, and �nance. Our interviews expose three
variables that govern success for a production ML deployment: Ve-
locity, Validation, and Versioning. We summarize common practices
for successful ML experimentation, deployment, and sustaining pro-
duction performance. Finally, we discuss interviewees’ pain points
and anti-patterns, with implications for tool design.

1 INTRODUCTION
As Machine Learning (ML) models are increasingly incorporated
into software, a nascent sub-�eld called MLOps (short for ML Op-
erations) has emerged to organize the “set of practices that aim
to deploy and maintain ML models in production reliably and e�-
ciently” [4, 77]. It is widely agreed that MLOps is hard. Anecdotal re-
ports claim that 90% of ML models don’t make it to production [76];
others claim that 85% of ML projects fail to deliver value [69].

At the same time, it is unclear why MLOps is hard. Our present-
day understanding of MLOps is limited to a fragmented landscape of
white papers, anecdotes, and thought pieces [14, 18, 20, 21, 34, 45],
as well as a cottage industry of startups aiming to address MLOps
issues [27]. Early work by Sculley et al. attributes MLOps chal-
lenges to “technical debt”, due to which there is “massive ongoing
maintenance costs in real-world ML systems” [64]. Most successful
ML deployments seem to involve a “team of engineers who spend a
signi�cant portion of their time on the less glamorous aspects of ML
like maintaining and monitoring ML pipelines” [54]. Prior work has
studied general practices of data analysis and science [30, 49, 62, 82],
without considering MLOps challenges of productionizing models.

There is thus a pressing need to bring clarity to MLOps, specif-
ically in identifying what MLOps typically involves—across or-
ganizations and ML applications. A richer understanding of best
practices and challenges in MLOps can surface gaps in present-day
processes and better inform the development of next-generation
tools. Therefore, we conducted a semi-structured interview study of
ML engineers (MLEs), each of whom has worked on ML models in
production. We sourced 18 participants from di�erent organizations
and applications (Table 1) and asked them open-ended questions to
understand their work�ow and day-to-day challenges.

Data Collection Experimentation Evaluation and
Deployment

Monitoring
and Response

Figure 1: Routine tasks in the ML engineering work�ow.

We �nd that MLEs perform four routine tasks, shown in Fig-
ure 1: (i) data collection, (ii) experimentation, (iii) evaluation and
deployment, and (iv) monitoring and response. Across tasks, we
observe three variables that dictate success for a production ML
deployment: Velocity, Validation, and Versioning.1 We describe
common MLOps practices, grouped under overarching �ndings:
ML engineering is very experimental in nature (Section 4.3).
As mentioned earlier, various articles claim that it is a problem for
90% of models to never make it to production [76], but we �nd that
this statistic is misguided. The nature of constant experimentation
is bound to create many versions, a small fraction of which (i.e. “the
best of the best”) will make it to production. Thus it is bene�cial
to prototype ideas quickly, by making minimal changes to existing
work�ows, and demonstrate practical bene�ts early—so that bad
models never make it far.
Operationalizing model evaluation requires an active orga-
nizational e�ort (Section 4.4). Popular model evaluation “best
practices” do not do justice to the rigor with which organiza-
tions think about deployments: they generally focus on using one
typically-static held-out dataset to evaluate the model on [38] and
a single ML metric choice (e.g., precision, recall) [1, 2]. We �nd that
MLEs invest signi�cant resources in maintaining multiple up-to-
date evaluation datasets and metrics over time—especially ensuring
that data sub-populations of interest are adequately covered.
Non-ML rules and human-in-the-loop practices keep mod-
els reliable in production (Section 4.5). We �nd that MLEs pre-
fer simple ideas, even if it means handling multiple versions: for
example, rather than leverage advanced techniques to minimize
distribution shift errors [15, 83], MLEs would simply create new
models, retrained on fresh data. MLEs ensured that deployments
were reliable via strategies such as on-call rotations, model roll-
backs, or elaborate rule-based guardrails to avoid incorrect outputs.

In Section 5, we discuss recurring MLOps challenges across all
tasks. We express these pain points as tensions and synergies be-
tween our three “V” variables—for example, undocumented “tribal
knowledge” about pipelines (Section 5.2.4) demonstrates a tension
between velocity (i.e., quickly changing the pipeline in response
to a bug) and well-executed versioning (i.e., documenting every
change). We conclude the description of each pain point with a
discussion of opportunities for future tools.

1Our Three Vs of MLOps aren’t meant to be confused with the Three Vs of Big Data
(Volume, Variety, Velocity) [61]. The �rst authors learned of the Big Data Vs after draft-
ing the MLOps Vs and were surprised to �nd similarities around volume/versioning
and velocity.

ar
X

iv
:2

20
9.

09
12

5v
1

 [c
s.S

E]
 1

6
Se

p
20

22

Shankar et al. [2022a] (under review)

Bolt-on, Compact, and Rapid
Program Slicing for Notebooks [Technical Report]

Shreya Shankar†1, Stephen Macke†2, Sarah Chasins1, Andrew Head3, Aditya Parameswaran1
1University of California, Berkeley {shreyashankar,schasins,adityagp}@berkeley.edu

2Una�liated stephen.macke@gmail.com
3University of Pennsylvania head@seas.upenn.edu

†Equal contribution (order determined by coin �ip)

ABSTRACT
Computational notebooks are commonly used for iterative work-
�ows, such as in exploratory data analysis. This process lends itself
to the accumulation of old code and hidden state, making it hard
for users to reason about the lineage of, e.g., plots depicting in-
sights or trained machine learning models. One way to reason
about code used to generate various notebook data artifacts is to
compute a program slice, but traditional static approaches to slic-
ing can be both inaccurate (failing to contain relevant code for
artifacts) and conservative (containing unnecessary code for an
artifacts). We present ��������, a dynamic slicer optimized for the
notebook setting whose instrumentation for resolving dynamic data
dependencies is both bolt-on (and therefore portable) and switchable
(allowing it to be selectively disabled in order to reduce instrumen-
tation overhead). We demonstrate ��������’s ability to construct
small and accurate backward slices (i.e., historical cell dependencies)
and forward slices (i.e., cells a�ected by the "rerun" of an earlier cell),
thereby improving reproducibility in notebooks and enabling faster
reactive re-execution, respectively. Comparing �������� with a
static slicer on 374 real notebook sessions, we found that ��������
�lters out far more super�uous program statements while main-
taining slice correctness, giving slices that are, on average, 66% and
54% smaller for backward and forward slices, respectively.

1 INTRODUCTION
Computational notebooks, and Project Jupyter [37] in particular,
have revolutionized the work�ows of data scientists [48, 49]. Note-
books admit a �exible execution model that segments units of com-
putation into so-called “cells” that can easily be back-referenced for
editing, duplication, or reordering, with intermediate program state
persisted to memory between subsequent cell executions. This it-
erative cell-based execution modality is ideal for rapid prototyping
and testing of hypotheses, a cornerstone of typical data science
work, and has led to their extensive usage—as of October 2020,
there were nearly 10 million notebooks available on GitHub [24].
Notebooks are Messy. The popularity of notebooks has come
with increased scrutiny; as such, notebooks now have a number
of well-documented disadvantages, related primarily to their ten-
dency to accumulate cruft in the form of both visible notebook code
[31, 35, 53] and invisible in-memory program state [22]. Data sci-
ence work�ows, in particular, tend to be exploratory in nature [35].
These �aws can make execution behavior in notebooks di�cult to
reason about and cause misleading or incorrect �ndings, leading
to confusion during ad-hoc exploration, prototyping, and iteration.
Organizing Notebook Iteration with Program Slicing. To ad-
dress notebook shortcomings, recent work has developed approaches

based on backward program slicing to gather code in messy note-
books [27, 33], thereby making it easier for data scientists to retrace
their steps. Traditionally applied to program debugging [7, 61],
program slicing determines a (typically smaller) subset of program
statements that a�ect some other program statement(s). In the con-
text of notebooks, backward program slicing captures the lineage
required to reproduce the outputs of one or more cells; e.g., to
“gather” code that was written in an ad-hoc fashion, potentially
out-of-order across multiple notebook cells, into a clean script that
reliably reproduces the data scientist’s analyses. The more compact
this slice is, the smaller the lineage, meaning it is more e�cient to
re-execute for reproducibility while preserving accuracy.

Forward program slicing also has applications in data science
work�ows in computational notebooks. In the context of notebooks,
a forward program slice determines the set of cells that are a�ected
by a given cell, and can be combined with other analysis techniques
to automatically (or reactively [14, 40, 44, 58]) re-execute all the
cells that could be a�ected (via data dependencies) by some other
cell, ensuring that cells do not become stale. A reactivity tool for
notebooks can be thought of as performing a form of materialized
view maintenance — speci�cally, “refreshing" the notebook after
an earlier cell is rerun by re-executing dependent cells. Such reac-
tivity features help to push the burden of tracking what cells have
become stale away from the user and down into the notebook ker-
nel. This feature is particularly helpful for data science work�ows,
which can involve toggling many values (e.g., hyperparameters)
and re-executing what might be dozens of downstream data trans-
formation dependencies. Once again, correctness (i.e., making sure
we are rerunning everything a�ected) while minimizing slice size
(i.e.,only rerunning what is needed) is key to ensuring interactivity
during exploratory data analysis.
Notebook-Centric Slicing: Challenges. Backward and forward
slicing can help automate away some of the messiness inherent
in notebook-resident data science work�ows and thereby improve
downstream reproducibility. Ideally, slices should be as small as
possible in order to eliminate extraneous computation, while pre-
serving correctness of the underlying program. However, computa-
tion of slices that are simultaneous small and accurate, and without
noticeable degradation of existing notebook behavior and perfor-
mance, is di�cult to achieve in practice. We now outline challenges
we faced while developing ��������, a state-of-the-art dynamic
slicer optimized speci�cally for the notebook setting, along with
contributions that addressed each challenge.
Challenge 1: Small and accurate program slices. Backward slic-
ing was �rst explored in the context of code gathering in note-
books by Head et al. [27]. However, it is not di�cult to construct
cases wherein the static slicing technique used in [27] will yield

Shankar et al. [2022b] (VLDB 2023)

Towards Observability for
Production Machine Learning Pipelines

[Vision Paper]

Shreya Shankar
UC Berkeley

shreyashankar@berkeley.edu

Aditya G. Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT
Software organizations are increasingly incorporating machine learning
(ML) into their product o�erings, driving a need for new data manage-
ment tools. Many of these tools facilitate the initial development of ML
applications, but sustaining these applications post-deployment is di�cult
due to lack of real-time feedback (i.e., labels) for predictions and silent
failures that could occur at any component of the ML pipeline (e.g., data
distribution shift or anomalous features). We propose a new type of data
management system that o�ers end-to-end observability, or visibility into
complex system behavior, for deployed ML pipelines through assisted (1)
detection, (2) diagnosis, and (3) reaction to ML-related bugs. We describe
new research challenges and suggest preliminary solution ideas in all three
aspects. Finally, we introduce an example architecture for a “bolt-on” ML
observability system, or one that wraps around existing tools in the stack.

1 INTRODUCTION
Organizations are devoting increasingly more resources towards de-
veloping and deploying applications powered by machine learning
(ML). ML applications rely on pipelines that span multiple heteroge-
neous stages or components, such as feature generation and model
training, requiring specialized data management tools. Most work
in data management for ML concentrates on speci�c components,
e.g., preprocessing [1, 2], or model training [3, 4, 5, 6]. Additionally,
some industry solutions have garnered widespread adoption by
handling data management issues that stem from experimenting
with models [7, 8].

However, there are many unaddressed challenges in sustaining
ML pipelines once built: maintaining, debugging, and improving
them after the initial deployment. Various best practices for “pro-
duction ML” and failure case studies highlight the dire need for ML
sustainability [9, 10]. We posit that for sustainability, ML practi-
tioners should be able to (1) detect, (2) diagnose, and (3) react to
bugs post-deployment. Compared to traditional software systems,
which typically only break when there are infrastructure issues,
ML pipelines can also fail unpredictably due to data issues—and
therefore are uniquely challenging to sustain in all three aspects.
Bug Detection: Hard Due to Feedback Delays. It is well-known
that data distributions change or shift over time, causing model
performance to drop [11, 12]. Detecting performance drops post-
deployment is challenging due to lack of “ground-truth” data: in
many production ML systems, feedback on predictions, or labels,
can arrive at a later time. Furthermore, in many pipelines, only a
few labels arrive (e.g., labelers manually annotate some predictions,
or only a handful of predicted outputs are displayed to the user).
As a result, practitioners are unable to monitor simple ML metrics
such as accuracy in real-time. As an alternative, end-to-end ML
frameworks such as TFX [13] and Sagemaker [14] monitor internal
pipeline state or health via distance metrics [15] over distributions
of ML features and outputs over time. These proxies often produce

too many false positives and thus do not accurately determine when
models are underperforming, as we will discuss further in Section 2.
Bug Diagnosis: Hard Due to Pipeline Complexity. Even if a
failure is con�dently detected, the complex, highly intertwined
nature of components in the ML pipeline makes it hard to under-
stand where bugs could lie. For production ML pipelines, “changing
anything changes everything (CACE),” causing predictions to vary
unpredictably [10]. Consequently, production ML uniquely suf-
fers from silent pipeline bugs, such as corrupted or stale subsets
of features. Practitioners painstakingly enumerate and maintain
(i.e., tune) data quality constraints for component inputs and out-
puts [16, 17], motivating automatic speci�cation and maintenance
of precise constraints at the component level.
Bug Fixes: Hard Due to No Obviously Correct Answers. Even
if users can successfully pinpoint all pipeline bugs, there can be
many ways to bring model performance back up to a desirable
level, and e�ectiveness depends on the nature of the data or task.
For example, di�erent components, when �xed, can cause di�erent
magnitudes of improvement in ML performance. Users often have
no sense of what to �x �rst, relative to the costs in resources and
time.
ML Observability. The challenges outlined above motivate the
need for observability [18], or “better visibility into understanding
the complex behavior of software using telemetry collected ... at run
time” [19], tailored for ML pipelines. Observability encompasses
more than just monitoring prede�ned metrics that capture holistic
system health (i.e., known-unknowns)—it also allows practitioners
to ask questions about how systems behaved on historical out-
puts (i.e., unknown-unknowns), or perform “needle-in-a-haystack”
queries. The north star for software observability systems is to give
users the power to ask new questions of historical system behavior
without gathering new data [20].
Contributions. In this paper, we discuss unaddressed research
challenges in ML observability as a call-to-arms for the database
community to contribute to this nascent research direction. We
propose the concept of a “bolt-on” observability system for ML
pipelines—one that does not require users to rewrite all their code to
use a speci�c framework. ML application developers assemble their
pipelines in an ad-hoc manner employing a myriad of tools along
the way, and our bolt-on observability system must interoperate
with such heterogeneous pipelines. For example, practitioners may
use a Hive metastore to catalog raw data [21], Deequ for data
validation [17], and Weights & Biases for experiment tracking [8].

For our bolt-on observability system to address bug detection,
diagnosis, and �xing needs, we propose a three-pronged approach:
(1) Monitoring approximations of top-line, i.e., business-critical, ML
metrics to alert users of ML performance drops even when there
may not be real-time labels. In Section 3.3, we propose automated
techniques that rely on lightweight proxies to bin predictions and

ar
X

iv
:2

10
8.

13
55

7v
3

 [c
s.S

E]
 1

5
Ju

l 2
02

2

Shankar and Parameswaran

[2022] (VLDB 2023)

Hindsight Logging across Model Training Versions
Rolando Garcia

UC Berkeley
rogarcia@berkeley.edu

Anusha Dandamudi
UC Berkeley

adandamudi@berkeley.edu

Gabriel Matute
UC Berkeley

gmatute@berkeley.edu

Joseph Gonzalez
UC Berkeley

jegonzal@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Koushik Sen
UC Berkeley

ksen@berkeley.edu

ABSTRACT
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui o�cia deserunt mollit anim id est laborum. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in repre-
henderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
o�cia deserunt mollit anim id est laborum. Ut enim ad minim ve-
niam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident, sunt in culpa qui o�cia
deserunt mollit anim id est laborum.

PVLDB Reference Format:
Rolando Garcia, Anusha Dandamudi, Gabriel Matute, Joseph Gonzalez,
Joseph M. Hellerstein, and Koushik Sen. Hindsight Logging across Model
Training Versions. PVLDB, V(I): pp-pp, 2022. doi:10.14777/3433333.3436925

1 INTRODUCTION
Enterprise solutions for machine learning are marketed to train
and score hundreds of thousands of models in a single day [1, 13].
As businesses grow and move to operationalize machine learning,
they confront increasingly more cumbersome data management
problems arising from the many versions and big metadata (i.e.
context) of model training at scale [9, 19]. In this paper, we de�ne the
structure and characterize the content of training context—across
versions—of predictive models (Sec 2), posit a relational data model
for querying and maintaining such context (Sec 3), and present
hindsight featurization, a novel approach and implementation for
back-�lling additional context, from the beginning of history, as
needed to answer ad-hoc queries about training (Sec 4-5).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. V, No. I
ISSN 2150–8097.
doi:10.14777/3433333.3436925

1.1 Model Training Histories & Featurization
At every step of exploration, model developers routinely track
and visualize time series data to diagnose common training prob-
lems such as exploding/vanishing gradients [11], dead ReLUs [14],
and reward hacking [3]. Model developers use state-of-the-art log-
gers specialized to machine learning (e.g. TensorBoard [10], and
WandB [2]) to e�ciently trace and visualize data as it changes over
time. The following are common examples of times series data
logged during the execution of model training:

• Parameters & Metrics: The loss, accuracy, learning rate,
and other values as they change over time.

• Tensor Histograms: Histograms of weights, gradients, ac-
tivations, and other tensors as they change over time.

• Images & Overlays: Segmentation masks, bounding boxes,
embeddings, and other transformed images as they change
over time.

1.1.1 Histories. In addition to generating large volumes of data per
run, model developers routinely sweep hundreds of training ver-
sions in the course of development [18, 19]. In this paper, we de�ne
“model training history” as all the execution data of model training
across versions. Beyond diagnostics, model training histories are
used for model tuning, experiment management, and continuous
integration.

1.1.2 Featurization. Logging libraries for ML capture enough aux-
iliary metadata when they intercept runtime values, that we can
consider them featurization tools. For example, when model devel-
opers log the training loss over time, the logging statement they
invoke also collects information such as the timestamp of the run,
the absolute path of the main script, the epoch and step counts,
and the name of the value. All this metadata forms the address of
the value, and every such value is a feature of model training. We
defer a more formal treatment of training features until Section 2,
but for now, it su�ces to say that the data written by ML loggers
(e.g. Weights & Biases) is automatically prepared for entry into
relational tables, and model developers are familiar with training
featurization.

1.2 Hindsight Featurization: Scenarios
Next, we look at three di�erent scenarios to illustrate the rich
diversity of queries over training histories:

• This data looks wrong! Alice logs the segmentation masks
for a sample of data points, as they change during training.
She worries that the masks appear shifted, and she wants to

Hindsight logging in model

training (in progress)

Moving Fast With Broken Data
����: an Automatic Data Validation System for ML Pipelines

Shreya Shankar†1, Labib Fawaz2, Karl Gyllstrom2, Aditya G. Parameswaran1
1University of California, Berkeley {shreyashankar,adityagp}@berkeley.edu

2Meta {labibfawaz,gylls}@fb.com
†Work performed while �rst author was at Meta

ABSTRACT
At Meta, we have many machine learning (ML) models in produc-
tion, each of which automatically retrain on large datasets that
often have a few features corrupted (due to engineering bugs). Con-
sequently, models will automatically retrain on erroneous partitions
of data, motivating a system to detect data issues and block retrain-
ing quickly—before downstream ML models regress. This system
is hard to build: in a world where some data is almost always cor-
rupted, which partitions are corrupted enough to gate retraining?
Gating too often yields stale model snapshots in production; gating
too little yields broken model snapshots in production.

In this paper, we present unique challenges associated with data
validation for ML pipelines at industrial scale. We introduce ����,
our high-precision and high-recall alerting system that pro�les
continually-changing training datasets in production ML pipelines.
���� identi�es data issues that cause downstream ML model per-
formance drops through intra-feature, inter-feature, and temporal
data validation. We discuss two case studies on Meta’s ML pipelines,
demonstrating ����’s performance and analyzing why baseline
automatic data validation methods achieve poor precision.

1 INTRODUCTION
Meta’s machine learning (ML) infrastructure powers tens of thou-
sands of production ML pipelines, or data pipelines consisting of
one or more ML models that generate predictions for downstream
applications (e.g., ad recommendation, feed ranking, content mod-
eration). Since these pipelines must continuously serve predictions
over time, even as data changes, their corresponding models train
in recurring mode—i.e., they frequently retrain, several times a day,
on a recent set of timestamped partitions of data. A partition for
an hour of features (i.e., input data to the model) can be as large as
several petabytes.

Recurring mode, at our scale, can be a headache. It is almost
always the case that engineering bugs (outside model developers’
control) corrupt some features. For example, suppose a new release
of the Instagram app doesn’t respond to the mute button and thus
corrupts audio features for a recommendation model. Recurring
mode will create a new, broken model snapshot (trained on an
erroneous partition of data) and replace the existing production
snapshot. Unfortunately, the production impact of corruption isn’t
realized until the snapshot is published: in our example, if the
corruption is large enough, the model’s overall click-through rate
(CTR) will decrease until an engineer �xes the audio bug, which
could take several hours or days.

Ideally, we could intervene at the model retraining stage and
block the promotion of a model snapshot if necessary. Our team,

⌧1

⌧2

⌧3

⌧4

Decorrelation
(Inter-feature validation)

completeness 0.8
`: 0.12
f : 0.3

unique vals: 2.2
top frequency: -1.3

Wass-1: -1.3

Anomaly Matrix Creation
(Intra-feature validation)

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.4
...
�0.4

...
0.2

...
0.6

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 3

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.6
...
�0.7

...
0.3

...
0.2

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 2

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.8
...
�0.9

...
3.3

...
0.4

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 1

Alert Generation
(Temporal validation)

feature completeness . . .

f1 0.1 ...f2 6.5
...

...
...

...
...

...

Feature Drill-Down
(Debugging)

Figure 1: ���� system components

AI Data Integrity (AIDI), has two goals: (1) to help ML engineers at
Meta debug ML pipelines when real-time ML pipeline performance
drops, and (2) to detect issues in training datasets across Meta
before downstream bugs occur. We’ve made signi�cant progress
in (1) with our �agship product that summarizes training dataset
partitions with statistics such as the mean, standard deviation, top
: values, and completeness (i.e., fraction of non-null values) for
each feature and model prediction. Our clients, the ML engineers
responsible for ensuring that ML pipeline performance stays high
over time, can query these summaries to debug performance drops.
However, achieving (2), or automatically validating data to detect
issues before they occur, has been an ongoing challenge. How do we
place an alert layer on top of the statistics we collect? In building
an automatic data validation system, we have to deal with the
following requirements:

(1) High-precision and high-recall alerts: Engineers explic-
itly require a minimum recall (otherwise the system will be
useless) and implicitly require a minimum precision (oth-
erwise they will not listen to the system). At �rst, we set
alerts on completeness drops—i.e., if a feature’s complete-
ness drops by more than 30%, our client gets noti�ed—but
this method produced too many false positive alerts, and
our clients thus silenced them. Moreover, clients are respon-
sible for ML pipelines consisting of features that they don’t
always create (due to organizational turnover). We found
that they initially spent signi�cant e�orts �nding a good
threshold (e.g., 30%) for alerts on completeness, then aban-
doned the approach because it’s impractical to enumerate
and carefully tune constraints and thresholds for features
they may not have context about.

(2) Ease of onboarding and use: When ML teams request
our data validation services, we must roll out a solution
immediately rather than collect data over weeks or months
(i.e., annotations of ground-truth corruptions) to tailor a
validation system speci�c to their data or pipelines. Clients
need a system that produces alerts quickly. Moreover, alerts
should be interpretable—i.e., map to a broken feature or set

Automatic data validation (in progress)

Mining feedback delays and estimating

unlabeled accuracy (in progress)

Shankar and Garcia et al.

MLOps Research Roadmap

HCI Data Systems

Operationalizing Machine Learning: An Interview Study
Shreya Shankar⇤, Rolando Garcia⇤, Joseph M. Hellerstein, Aditya G. Parameswaran

University of California, Berkeley
{shreyashankar,rogarcia,hellerstein,adityagp}@berkeley.edu

⇤Co-�rst authors

ABSTRACT
Organizations rely on machine learning engineers (MLEs) to opera-
tionalize ML, i.e., deploy and maintain ML pipelines in production.
The process of operationalizing ML, or MLOps, consists of a contin-
ual loop of (i) data collection and labeling, (ii) experimentation to
improve ML performance, (iii) evaluation throughout a multi-staged
deployment process, and (iv) monitoring of performance drops in
production. When considered together, these responsibilities seem
staggering—how does anyone do MLOps, what are the unaddressed
challenges, and what are the implications for tool builders?

We conducted semi-structured ethnographic interviews with
18 MLEs working across many applications, including chatbots,
autonomous vehicles, and �nance. Our interviews expose three
variables that govern success for a production ML deployment: Ve-
locity, Validation, and Versioning. We summarize common practices
for successful ML experimentation, deployment, and sustaining pro-
duction performance. Finally, we discuss interviewees’ pain points
and anti-patterns, with implications for tool design.

1 INTRODUCTION
As Machine Learning (ML) models are increasingly incorporated
into software, a nascent sub-�eld called MLOps (short for ML Op-
erations) has emerged to organize the “set of practices that aim
to deploy and maintain ML models in production reliably and e�-
ciently” [4, 77]. It is widely agreed that MLOps is hard. Anecdotal re-
ports claim that 90% of ML models don’t make it to production [76];
others claim that 85% of ML projects fail to deliver value [69].

At the same time, it is unclear why MLOps is hard. Our present-
day understanding of MLOps is limited to a fragmented landscape of
white papers, anecdotes, and thought pieces [14, 18, 20, 21, 34, 45],
as well as a cottage industry of startups aiming to address MLOps
issues [27]. Early work by Sculley et al. attributes MLOps chal-
lenges to “technical debt”, due to which there is “massive ongoing
maintenance costs in real-world ML systems” [64]. Most successful
ML deployments seem to involve a “team of engineers who spend a
signi�cant portion of their time on the less glamorous aspects of ML
like maintaining and monitoring ML pipelines” [54]. Prior work has
studied general practices of data analysis and science [30, 49, 62, 82],
without considering MLOps challenges of productionizing models.

There is thus a pressing need to bring clarity to MLOps, specif-
ically in identifying what MLOps typically involves—across or-
ganizations and ML applications. A richer understanding of best
practices and challenges in MLOps can surface gaps in present-day
processes and better inform the development of next-generation
tools. Therefore, we conducted a semi-structured interview study of
ML engineers (MLEs), each of whom has worked on ML models in
production. We sourced 18 participants from di�erent organizations
and applications (Table 1) and asked them open-ended questions to
understand their work�ow and day-to-day challenges.

Data Collection Experimentation Evaluation and
Deployment

Monitoring
and Response

Figure 1: Routine tasks in the ML engineering work�ow.

We �nd that MLEs perform four routine tasks, shown in Fig-
ure 1: (i) data collection, (ii) experimentation, (iii) evaluation and
deployment, and (iv) monitoring and response. Across tasks, we
observe three variables that dictate success for a production ML
deployment: Velocity, Validation, and Versioning.1 We describe
common MLOps practices, grouped under overarching �ndings:
ML engineering is very experimental in nature (Section 4.3).
As mentioned earlier, various articles claim that it is a problem for
90% of models to never make it to production [76], but we �nd that
this statistic is misguided. The nature of constant experimentation
is bound to create many versions, a small fraction of which (i.e. “the
best of the best”) will make it to production. Thus it is bene�cial
to prototype ideas quickly, by making minimal changes to existing
work�ows, and demonstrate practical bene�ts early—so that bad
models never make it far.
Operationalizing model evaluation requires an active orga-
nizational e�ort (Section 4.4). Popular model evaluation “best
practices” do not do justice to the rigor with which organiza-
tions think about deployments: they generally focus on using one
typically-static held-out dataset to evaluate the model on [38] and
a single ML metric choice (e.g., precision, recall) [1, 2]. We �nd that
MLEs invest signi�cant resources in maintaining multiple up-to-
date evaluation datasets and metrics over time—especially ensuring
that data sub-populations of interest are adequately covered.
Non-ML rules and human-in-the-loop practices keep mod-
els reliable in production (Section 4.5). We �nd that MLEs pre-
fer simple ideas, even if it means handling multiple versions: for
example, rather than leverage advanced techniques to minimize
distribution shift errors [15, 83], MLEs would simply create new
models, retrained on fresh data. MLEs ensured that deployments
were reliable via strategies such as on-call rotations, model roll-
backs, or elaborate rule-based guardrails to avoid incorrect outputs.

In Section 5, we discuss recurring MLOps challenges across all
tasks. We express these pain points as tensions and synergies be-
tween our three “V” variables—for example, undocumented “tribal
knowledge” about pipelines (Section 5.2.4) demonstrates a tension
between velocity (i.e., quickly changing the pipeline in response
to a bug) and well-executed versioning (i.e., documenting every
change). We conclude the description of each pain point with a
discussion of opportunities for future tools.

1Our Three Vs of MLOps aren’t meant to be confused with the Three Vs of Big Data
(Volume, Variety, Velocity) [61]. The �rst authors learned of the Big Data Vs after draft-
ing the MLOps Vs and were surprised to �nd similarities around volume/versioning
and velocity.

ar
X

iv
:2

20
9.

09
12

5v
1

 [c
s.S

E]
 1

6
Se

p
20

22

Shankar et al. [2022a] (under review)

Bolt-on, Compact, and Rapid
Program Slicing for Notebooks [Technical Report]

Shreya Shankar†1, Stephen Macke†2, Sarah Chasins1, Andrew Head3, Aditya Parameswaran1
1University of California, Berkeley {shreyashankar,schasins,adityagp}@berkeley.edu

2Una�liated stephen.macke@gmail.com
3University of Pennsylvania head@seas.upenn.edu

†Equal contribution (order determined by coin �ip)

ABSTRACT
Computational notebooks are commonly used for iterative work-
�ows, such as in exploratory data analysis. This process lends itself
to the accumulation of old code and hidden state, making it hard
for users to reason about the lineage of, e.g., plots depicting in-
sights or trained machine learning models. One way to reason
about code used to generate various notebook data artifacts is to
compute a program slice, but traditional static approaches to slic-
ing can be both inaccurate (failing to contain relevant code for
artifacts) and conservative (containing unnecessary code for an
artifacts). We present ��������, a dynamic slicer optimized for the
notebook setting whose instrumentation for resolving dynamic data
dependencies is both bolt-on (and therefore portable) and switchable
(allowing it to be selectively disabled in order to reduce instrumen-
tation overhead). We demonstrate ��������’s ability to construct
small and accurate backward slices (i.e., historical cell dependencies)
and forward slices (i.e., cells a�ected by the "rerun" of an earlier cell),
thereby improving reproducibility in notebooks and enabling faster
reactive re-execution, respectively. Comparing �������� with a
static slicer on 374 real notebook sessions, we found that ��������
�lters out far more super�uous program statements while main-
taining slice correctness, giving slices that are, on average, 66% and
54% smaller for backward and forward slices, respectively.

1 INTRODUCTION
Computational notebooks, and Project Jupyter [37] in particular,
have revolutionized the work�ows of data scientists [48, 49]. Note-
books admit a �exible execution model that segments units of com-
putation into so-called “cells” that can easily be back-referenced for
editing, duplication, or reordering, with intermediate program state
persisted to memory between subsequent cell executions. This it-
erative cell-based execution modality is ideal for rapid prototyping
and testing of hypotheses, a cornerstone of typical data science
work, and has led to their extensive usage—as of October 2020,
there were nearly 10 million notebooks available on GitHub [24].
Notebooks are Messy. The popularity of notebooks has come
with increased scrutiny; as such, notebooks now have a number
of well-documented disadvantages, related primarily to their ten-
dency to accumulate cruft in the form of both visible notebook code
[31, 35, 53] and invisible in-memory program state [22]. Data sci-
ence work�ows, in particular, tend to be exploratory in nature [35].
These �aws can make execution behavior in notebooks di�cult to
reason about and cause misleading or incorrect �ndings, leading
to confusion during ad-hoc exploration, prototyping, and iteration.
Organizing Notebook Iteration with Program Slicing. To ad-
dress notebook shortcomings, recent work has developed approaches

based on backward program slicing to gather code in messy note-
books [27, 33], thereby making it easier for data scientists to retrace
their steps. Traditionally applied to program debugging [7, 61],
program slicing determines a (typically smaller) subset of program
statements that a�ect some other program statement(s). In the con-
text of notebooks, backward program slicing captures the lineage
required to reproduce the outputs of one or more cells; e.g., to
“gather” code that was written in an ad-hoc fashion, potentially
out-of-order across multiple notebook cells, into a clean script that
reliably reproduces the data scientist’s analyses. The more compact
this slice is, the smaller the lineage, meaning it is more e�cient to
re-execute for reproducibility while preserving accuracy.

Forward program slicing also has applications in data science
work�ows in computational notebooks. In the context of notebooks,
a forward program slice determines the set of cells that are a�ected
by a given cell, and can be combined with other analysis techniques
to automatically (or reactively [14, 40, 44, 58]) re-execute all the
cells that could be a�ected (via data dependencies) by some other
cell, ensuring that cells do not become stale. A reactivity tool for
notebooks can be thought of as performing a form of materialized
view maintenance — speci�cally, “refreshing" the notebook after
an earlier cell is rerun by re-executing dependent cells. Such reac-
tivity features help to push the burden of tracking what cells have
become stale away from the user and down into the notebook ker-
nel. This feature is particularly helpful for data science work�ows,
which can involve toggling many values (e.g., hyperparameters)
and re-executing what might be dozens of downstream data trans-
formation dependencies. Once again, correctness (i.e., making sure
we are rerunning everything a�ected) while minimizing slice size
(i.e.,only rerunning what is needed) is key to ensuring interactivity
during exploratory data analysis.
Notebook-Centric Slicing: Challenges. Backward and forward
slicing can help automate away some of the messiness inherent
in notebook-resident data science work�ows and thereby improve
downstream reproducibility. Ideally, slices should be as small as
possible in order to eliminate extraneous computation, while pre-
serving correctness of the underlying program. However, computa-
tion of slices that are simultaneous small and accurate, and without
noticeable degradation of existing notebook behavior and perfor-
mance, is di�cult to achieve in practice. We now outline challenges
we faced while developing ��������, a state-of-the-art dynamic
slicer optimized speci�cally for the notebook setting, along with
contributions that addressed each challenge.
Challenge 1: Small and accurate program slices. Backward slic-
ing was �rst explored in the context of code gathering in note-
books by Head et al. [27]. However, it is not di�cult to construct
cases wherein the static slicing technique used in [27] will yield

Shankar et al. [2022b] (VLDB 2023)

Towards Observability for
Production Machine Learning Pipelines

[Vision Paper]

Shreya Shankar
UC Berkeley

shreyashankar@berkeley.edu

Aditya G. Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT
Software organizations are increasingly incorporating machine learning
(ML) into their product o�erings, driving a need for new data manage-
ment tools. Many of these tools facilitate the initial development of ML
applications, but sustaining these applications post-deployment is di�cult
due to lack of real-time feedback (i.e., labels) for predictions and silent
failures that could occur at any component of the ML pipeline (e.g., data
distribution shift or anomalous features). We propose a new type of data
management system that o�ers end-to-end observability, or visibility into
complex system behavior, for deployed ML pipelines through assisted (1)
detection, (2) diagnosis, and (3) reaction to ML-related bugs. We describe
new research challenges and suggest preliminary solution ideas in all three
aspects. Finally, we introduce an example architecture for a “bolt-on” ML
observability system, or one that wraps around existing tools in the stack.

1 INTRODUCTION
Organizations are devoting increasingly more resources towards de-
veloping and deploying applications powered by machine learning
(ML). ML applications rely on pipelines that span multiple heteroge-
neous stages or components, such as feature generation and model
training, requiring specialized data management tools. Most work
in data management for ML concentrates on speci�c components,
e.g., preprocessing [1, 2], or model training [3, 4, 5, 6]. Additionally,
some industry solutions have garnered widespread adoption by
handling data management issues that stem from experimenting
with models [7, 8].

However, there are many unaddressed challenges in sustaining
ML pipelines once built: maintaining, debugging, and improving
them after the initial deployment. Various best practices for “pro-
duction ML” and failure case studies highlight the dire need for ML
sustainability [9, 10]. We posit that for sustainability, ML practi-
tioners should be able to (1) detect, (2) diagnose, and (3) react to
bugs post-deployment. Compared to traditional software systems,
which typically only break when there are infrastructure issues,
ML pipelines can also fail unpredictably due to data issues—and
therefore are uniquely challenging to sustain in all three aspects.
Bug Detection: Hard Due to Feedback Delays. It is well-known
that data distributions change or shift over time, causing model
performance to drop [11, 12]. Detecting performance drops post-
deployment is challenging due to lack of “ground-truth” data: in
many production ML systems, feedback on predictions, or labels,
can arrive at a later time. Furthermore, in many pipelines, only a
few labels arrive (e.g., labelers manually annotate some predictions,
or only a handful of predicted outputs are displayed to the user).
As a result, practitioners are unable to monitor simple ML metrics
such as accuracy in real-time. As an alternative, end-to-end ML
frameworks such as TFX [13] and Sagemaker [14] monitor internal
pipeline state or health via distance metrics [15] over distributions
of ML features and outputs over time. These proxies often produce

too many false positives and thus do not accurately determine when
models are underperforming, as we will discuss further in Section 2.
Bug Diagnosis: Hard Due to Pipeline Complexity. Even if a
failure is con�dently detected, the complex, highly intertwined
nature of components in the ML pipeline makes it hard to under-
stand where bugs could lie. For production ML pipelines, “changing
anything changes everything (CACE),” causing predictions to vary
unpredictably [10]. Consequently, production ML uniquely suf-
fers from silent pipeline bugs, such as corrupted or stale subsets
of features. Practitioners painstakingly enumerate and maintain
(i.e., tune) data quality constraints for component inputs and out-
puts [16, 17], motivating automatic speci�cation and maintenance
of precise constraints at the component level.
Bug Fixes: Hard Due to No Obviously Correct Answers. Even
if users can successfully pinpoint all pipeline bugs, there can be
many ways to bring model performance back up to a desirable
level, and e�ectiveness depends on the nature of the data or task.
For example, di�erent components, when �xed, can cause di�erent
magnitudes of improvement in ML performance. Users often have
no sense of what to �x �rst, relative to the costs in resources and
time.
ML Observability. The challenges outlined above motivate the
need for observability [18], or “better visibility into understanding
the complex behavior of software using telemetry collected ... at run
time” [19], tailored for ML pipelines. Observability encompasses
more than just monitoring prede�ned metrics that capture holistic
system health (i.e., known-unknowns)—it also allows practitioners
to ask questions about how systems behaved on historical out-
puts (i.e., unknown-unknowns), or perform “needle-in-a-haystack”
queries. The north star for software observability systems is to give
users the power to ask new questions of historical system behavior
without gathering new data [20].
Contributions. In this paper, we discuss unaddressed research
challenges in ML observability as a call-to-arms for the database
community to contribute to this nascent research direction. We
propose the concept of a “bolt-on” observability system for ML
pipelines—one that does not require users to rewrite all their code to
use a speci�c framework. ML application developers assemble their
pipelines in an ad-hoc manner employing a myriad of tools along
the way, and our bolt-on observability system must interoperate
with such heterogeneous pipelines. For example, practitioners may
use a Hive metastore to catalog raw data [21], Deequ for data
validation [17], and Weights & Biases for experiment tracking [8].

For our bolt-on observability system to address bug detection,
diagnosis, and �xing needs, we propose a three-pronged approach:
(1) Monitoring approximations of top-line, i.e., business-critical, ML
metrics to alert users of ML performance drops even when there
may not be real-time labels. In Section 3.3, we propose automated
techniques that rely on lightweight proxies to bin predictions and

ar
X

iv
:2

10
8.

13
55

7v
3

 [c
s.S

E]
 1

5
Ju

l 2
02

2

Shankar and Parameswaran

[2022] (VLDB 2023)

Hindsight Logging across Model Training Versions
Rolando Garcia

UC Berkeley
rogarcia@berkeley.edu

Anusha Dandamudi
UC Berkeley

adandamudi@berkeley.edu

Gabriel Matute
UC Berkeley

gmatute@berkeley.edu

Joseph Gonzalez
UC Berkeley

jegonzal@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Koushik Sen
UC Berkeley

ksen@berkeley.edu

ABSTRACT
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui o�cia deserunt mollit anim id est laborum. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in repre-
henderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
o�cia deserunt mollit anim id est laborum. Ut enim ad minim ve-
niam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident, sunt in culpa qui o�cia
deserunt mollit anim id est laborum.

PVLDB Reference Format:
Rolando Garcia, Anusha Dandamudi, Gabriel Matute, Joseph Gonzalez,
Joseph M. Hellerstein, and Koushik Sen. Hindsight Logging across Model
Training Versions. PVLDB, V(I): pp-pp, 2022. doi:10.14777/3433333.3436925

1 INTRODUCTION
Enterprise solutions for machine learning are marketed to train
and score hundreds of thousands of models in a single day [1, 13].
As businesses grow and move to operationalize machine learning,
they confront increasingly more cumbersome data management
problems arising from the many versions and big metadata (i.e.
context) of model training at scale [9, 19]. In this paper, we de�ne the
structure and characterize the content of training context—across
versions—of predictive models (Sec 2), posit a relational data model
for querying and maintaining such context (Sec 3), and present
hindsight featurization, a novel approach and implementation for
back-�lling additional context, from the beginning of history, as
needed to answer ad-hoc queries about training (Sec 4-5).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. V, No. I
ISSN 2150–8097.
doi:10.14777/3433333.3436925

1.1 Model Training Histories & Featurization
At every step of exploration, model developers routinely track
and visualize time series data to diagnose common training prob-
lems such as exploding/vanishing gradients [11], dead ReLUs [14],
and reward hacking [3]. Model developers use state-of-the-art log-
gers specialized to machine learning (e.g. TensorBoard [10], and
WandB [2]) to e�ciently trace and visualize data as it changes over
time. The following are common examples of times series data
logged during the execution of model training:

• Parameters & Metrics: The loss, accuracy, learning rate,
and other values as they change over time.

• Tensor Histograms: Histograms of weights, gradients, ac-
tivations, and other tensors as they change over time.

• Images & Overlays: Segmentation masks, bounding boxes,
embeddings, and other transformed images as they change
over time.

1.1.1 Histories. In addition to generating large volumes of data per
run, model developers routinely sweep hundreds of training ver-
sions in the course of development [18, 19]. In this paper, we de�ne
“model training history” as all the execution data of model training
across versions. Beyond diagnostics, model training histories are
used for model tuning, experiment management, and continuous
integration.

1.1.2 Featurization. Logging libraries for ML capture enough aux-
iliary metadata when they intercept runtime values, that we can
consider them featurization tools. For example, when model devel-
opers log the training loss over time, the logging statement they
invoke also collects information such as the timestamp of the run,
the absolute path of the main script, the epoch and step counts,
and the name of the value. All this metadata forms the address of
the value, and every such value is a feature of model training. We
defer a more formal treatment of training features until Section 2,
but for now, it su�ces to say that the data written by ML loggers
(e.g. Weights & Biases) is automatically prepared for entry into
relational tables, and model developers are familiar with training
featurization.

1.2 Hindsight Featurization: Scenarios
Next, we look at three di�erent scenarios to illustrate the rich
diversity of queries over training histories:

• This data looks wrong! Alice logs the segmentation masks
for a sample of data points, as they change during training.
She worries that the masks appear shifted, and she wants to

Hindsight logging in model

training (in progress)

Moving Fast With Broken Data
����: an Automatic Data Validation System for ML Pipelines

Shreya Shankar†1, Labib Fawaz2, Karl Gyllstrom2, Aditya G. Parameswaran1
1University of California, Berkeley {shreyashankar,adityagp}@berkeley.edu

2Meta {labibfawaz,gylls}@fb.com
†Work performed while �rst author was at Meta

ABSTRACT
At Meta, we have many machine learning (ML) models in produc-
tion, each of which automatically retrain on large datasets that
often have a few features corrupted (due to engineering bugs). Con-
sequently, models will automatically retrain on erroneous partitions
of data, motivating a system to detect data issues and block retrain-
ing quickly—before downstream ML models regress. This system
is hard to build: in a world where some data is almost always cor-
rupted, which partitions are corrupted enough to gate retraining?
Gating too often yields stale model snapshots in production; gating
too little yields broken model snapshots in production.

In this paper, we present unique challenges associated with data
validation for ML pipelines at industrial scale. We introduce ����,
our high-precision and high-recall alerting system that pro�les
continually-changing training datasets in production ML pipelines.
���� identi�es data issues that cause downstream ML model per-
formance drops through intra-feature, inter-feature, and temporal
data validation. We discuss two case studies on Meta’s ML pipelines,
demonstrating ����’s performance and analyzing why baseline
automatic data validation methods achieve poor precision.

1 INTRODUCTION
Meta’s machine learning (ML) infrastructure powers tens of thou-
sands of production ML pipelines, or data pipelines consisting of
one or more ML models that generate predictions for downstream
applications (e.g., ad recommendation, feed ranking, content mod-
eration). Since these pipelines must continuously serve predictions
over time, even as data changes, their corresponding models train
in recurring mode—i.e., they frequently retrain, several times a day,
on a recent set of timestamped partitions of data. A partition for
an hour of features (i.e., input data to the model) can be as large as
several petabytes.

Recurring mode, at our scale, can be a headache. It is almost
always the case that engineering bugs (outside model developers’
control) corrupt some features. For example, suppose a new release
of the Instagram app doesn’t respond to the mute button and thus
corrupts audio features for a recommendation model. Recurring
mode will create a new, broken model snapshot (trained on an
erroneous partition of data) and replace the existing production
snapshot. Unfortunately, the production impact of corruption isn’t
realized until the snapshot is published: in our example, if the
corruption is large enough, the model’s overall click-through rate
(CTR) will decrease until an engineer �xes the audio bug, which
could take several hours or days.

Ideally, we could intervene at the model retraining stage and
block the promotion of a model snapshot if necessary. Our team,

⌧1

⌧2

⌧3

⌧4

Decorrelation
(Inter-feature validation)

completeness 0.8
`: 0.12
f : 0.3

unique vals: 2.2
top frequency: -1.3

Wass-1: -1.3

Anomaly Matrix Creation
(Intra-feature validation)

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.4
...
�0.4

...
0.2

...
0.6

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 3

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.6
...
�0.7

...
0.3

...
0.2

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 2

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.8
...
�0.9

...
3.3

...
0.4

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 1

Alert Generation
(Temporal validation)

feature completeness . . .

f1 0.1 ...f2 6.5
...

...
...

...
...

...

Feature Drill-Down
(Debugging)

Figure 1: ���� system components

AI Data Integrity (AIDI), has two goals: (1) to help ML engineers at
Meta debug ML pipelines when real-time ML pipeline performance
drops, and (2) to detect issues in training datasets across Meta
before downstream bugs occur. We’ve made signi�cant progress
in (1) with our �agship product that summarizes training dataset
partitions with statistics such as the mean, standard deviation, top
: values, and completeness (i.e., fraction of non-null values) for
each feature and model prediction. Our clients, the ML engineers
responsible for ensuring that ML pipeline performance stays high
over time, can query these summaries to debug performance drops.
However, achieving (2), or automatically validating data to detect
issues before they occur, has been an ongoing challenge. How do we
place an alert layer on top of the statistics we collect? In building
an automatic data validation system, we have to deal with the
following requirements:

(1) High-precision and high-recall alerts: Engineers explic-
itly require a minimum recall (otherwise the system will be
useless) and implicitly require a minimum precision (oth-
erwise they will not listen to the system). At �rst, we set
alerts on completeness drops—i.e., if a feature’s complete-
ness drops by more than 30%, our client gets noti�ed—but
this method produced too many false positive alerts, and
our clients thus silenced them. Moreover, clients are respon-
sible for ML pipelines consisting of features that they don’t
always create (due to organizational turnover). We found
that they initially spent signi�cant e�orts �nding a good
threshold (e.g., 30%) for alerts on completeness, then aban-
doned the approach because it’s impractical to enumerate
and carefully tune constraints and thresholds for features
they may not have context about.

(2) Ease of onboarding and use: When ML teams request
our data validation services, we must roll out a solution
immediately rather than collect data over weeks or months
(i.e., annotations of ground-truth corruptions) to tailor a
validation system speci�c to their data or pipelines. Clients
need a system that produces alerts quickly. Moreover, alerts
should be interpretable—i.e., map to a broken feature or set

Automatic data validation (in progress)

Mining feedback delays and estimating

unlabeled accuracy (in progress)

Shankar and Garcia et al.

MLOps Research Roadmap

HCI Data Systems

Operationalizing Machine Learning: An Interview Study
Shreya Shankar⇤, Rolando Garcia⇤, Joseph M. Hellerstein, Aditya G. Parameswaran

University of California, Berkeley
{shreyashankar,rogarcia,hellerstein,adityagp}@berkeley.edu

⇤Co-�rst authors

ABSTRACT
Organizations rely on machine learning engineers (MLEs) to opera-
tionalize ML, i.e., deploy and maintain ML pipelines in production.
The process of operationalizing ML, or MLOps, consists of a contin-
ual loop of (i) data collection and labeling, (ii) experimentation to
improve ML performance, (iii) evaluation throughout a multi-staged
deployment process, and (iv) monitoring of performance drops in
production. When considered together, these responsibilities seem
staggering—how does anyone do MLOps, what are the unaddressed
challenges, and what are the implications for tool builders?

We conducted semi-structured ethnographic interviews with
18 MLEs working across many applications, including chatbots,
autonomous vehicles, and �nance. Our interviews expose three
variables that govern success for a production ML deployment: Ve-
locity, Validation, and Versioning. We summarize common practices
for successful ML experimentation, deployment, and sustaining pro-
duction performance. Finally, we discuss interviewees’ pain points
and anti-patterns, with implications for tool design.

1 INTRODUCTION
As Machine Learning (ML) models are increasingly incorporated
into software, a nascent sub-�eld called MLOps (short for ML Op-
erations) has emerged to organize the “set of practices that aim
to deploy and maintain ML models in production reliably and e�-
ciently” [4, 77]. It is widely agreed that MLOps is hard. Anecdotal re-
ports claim that 90% of ML models don’t make it to production [76];
others claim that 85% of ML projects fail to deliver value [69].

At the same time, it is unclear why MLOps is hard. Our present-
day understanding of MLOps is limited to a fragmented landscape of
white papers, anecdotes, and thought pieces [14, 18, 20, 21, 34, 45],
as well as a cottage industry of startups aiming to address MLOps
issues [27]. Early work by Sculley et al. attributes MLOps chal-
lenges to “technical debt”, due to which there is “massive ongoing
maintenance costs in real-world ML systems” [64]. Most successful
ML deployments seem to involve a “team of engineers who spend a
signi�cant portion of their time on the less glamorous aspects of ML
like maintaining and monitoring ML pipelines” [54]. Prior work has
studied general practices of data analysis and science [30, 49, 62, 82],
without considering MLOps challenges of productionizing models.

There is thus a pressing need to bring clarity to MLOps, specif-
ically in identifying what MLOps typically involves—across or-
ganizations and ML applications. A richer understanding of best
practices and challenges in MLOps can surface gaps in present-day
processes and better inform the development of next-generation
tools. Therefore, we conducted a semi-structured interview study of
ML engineers (MLEs), each of whom has worked on ML models in
production. We sourced 18 participants from di�erent organizations
and applications (Table 1) and asked them open-ended questions to
understand their work�ow and day-to-day challenges.

Data Collection Experimentation Evaluation and
Deployment

Monitoring
and Response

Figure 1: Routine tasks in the ML engineering work�ow.

We �nd that MLEs perform four routine tasks, shown in Fig-
ure 1: (i) data collection, (ii) experimentation, (iii) evaluation and
deployment, and (iv) monitoring and response. Across tasks, we
observe three variables that dictate success for a production ML
deployment: Velocity, Validation, and Versioning.1 We describe
common MLOps practices, grouped under overarching �ndings:
ML engineering is very experimental in nature (Section 4.3).
As mentioned earlier, various articles claim that it is a problem for
90% of models to never make it to production [76], but we �nd that
this statistic is misguided. The nature of constant experimentation
is bound to create many versions, a small fraction of which (i.e. “the
best of the best”) will make it to production. Thus it is bene�cial
to prototype ideas quickly, by making minimal changes to existing
work�ows, and demonstrate practical bene�ts early—so that bad
models never make it far.
Operationalizing model evaluation requires an active orga-
nizational e�ort (Section 4.4). Popular model evaluation “best
practices” do not do justice to the rigor with which organiza-
tions think about deployments: they generally focus on using one
typically-static held-out dataset to evaluate the model on [38] and
a single ML metric choice (e.g., precision, recall) [1, 2]. We �nd that
MLEs invest signi�cant resources in maintaining multiple up-to-
date evaluation datasets and metrics over time—especially ensuring
that data sub-populations of interest are adequately covered.
Non-ML rules and human-in-the-loop practices keep mod-
els reliable in production (Section 4.5). We �nd that MLEs pre-
fer simple ideas, even if it means handling multiple versions: for
example, rather than leverage advanced techniques to minimize
distribution shift errors [15, 83], MLEs would simply create new
models, retrained on fresh data. MLEs ensured that deployments
were reliable via strategies such as on-call rotations, model roll-
backs, or elaborate rule-based guardrails to avoid incorrect outputs.

In Section 5, we discuss recurring MLOps challenges across all
tasks. We express these pain points as tensions and synergies be-
tween our three “V” variables—for example, undocumented “tribal
knowledge” about pipelines (Section 5.2.4) demonstrates a tension
between velocity (i.e., quickly changing the pipeline in response
to a bug) and well-executed versioning (i.e., documenting every
change). We conclude the description of each pain point with a
discussion of opportunities for future tools.

1Our Three Vs of MLOps aren’t meant to be confused with the Three Vs of Big Data
(Volume, Variety, Velocity) [61]. The �rst authors learned of the Big Data Vs after draft-
ing the MLOps Vs and were surprised to �nd similarities around volume/versioning
and velocity.

ar
X

iv
:2

20
9.

09
12

5v
1

 [c
s.S

E]
 1

6
Se

p
20

22

Shankar et al. [2022a] (under review)

Bolt-on, Compact, and Rapid
Program Slicing for Notebooks [Technical Report]

Shreya Shankar†1, Stephen Macke†2, Sarah Chasins1, Andrew Head3, Aditya Parameswaran1
1University of California, Berkeley {shreyashankar,schasins,adityagp}@berkeley.edu

2Una�liated stephen.macke@gmail.com
3University of Pennsylvania head@seas.upenn.edu

†Equal contribution (order determined by coin �ip)

ABSTRACT
Computational notebooks are commonly used for iterative work-
�ows, such as in exploratory data analysis. This process lends itself
to the accumulation of old code and hidden state, making it hard
for users to reason about the lineage of, e.g., plots depicting in-
sights or trained machine learning models. One way to reason
about code used to generate various notebook data artifacts is to
compute a program slice, but traditional static approaches to slic-
ing can be both inaccurate (failing to contain relevant code for
artifacts) and conservative (containing unnecessary code for an
artifacts). We present ��������, a dynamic slicer optimized for the
notebook setting whose instrumentation for resolving dynamic data
dependencies is both bolt-on (and therefore portable) and switchable
(allowing it to be selectively disabled in order to reduce instrumen-
tation overhead). We demonstrate ��������’s ability to construct
small and accurate backward slices (i.e., historical cell dependencies)
and forward slices (i.e., cells a�ected by the "rerun" of an earlier cell),
thereby improving reproducibility in notebooks and enabling faster
reactive re-execution, respectively. Comparing �������� with a
static slicer on 374 real notebook sessions, we found that ��������
�lters out far more super�uous program statements while main-
taining slice correctness, giving slices that are, on average, 66% and
54% smaller for backward and forward slices, respectively.

1 INTRODUCTION
Computational notebooks, and Project Jupyter [37] in particular,
have revolutionized the work�ows of data scientists [48, 49]. Note-
books admit a �exible execution model that segments units of com-
putation into so-called “cells” that can easily be back-referenced for
editing, duplication, or reordering, with intermediate program state
persisted to memory between subsequent cell executions. This it-
erative cell-based execution modality is ideal for rapid prototyping
and testing of hypotheses, a cornerstone of typical data science
work, and has led to their extensive usage—as of October 2020,
there were nearly 10 million notebooks available on GitHub [24].
Notebooks are Messy. The popularity of notebooks has come
with increased scrutiny; as such, notebooks now have a number
of well-documented disadvantages, related primarily to their ten-
dency to accumulate cruft in the form of both visible notebook code
[31, 35, 53] and invisible in-memory program state [22]. Data sci-
ence work�ows, in particular, tend to be exploratory in nature [35].
These �aws can make execution behavior in notebooks di�cult to
reason about and cause misleading or incorrect �ndings, leading
to confusion during ad-hoc exploration, prototyping, and iteration.
Organizing Notebook Iteration with Program Slicing. To ad-
dress notebook shortcomings, recent work has developed approaches

based on backward program slicing to gather code in messy note-
books [27, 33], thereby making it easier for data scientists to retrace
their steps. Traditionally applied to program debugging [7, 61],
program slicing determines a (typically smaller) subset of program
statements that a�ect some other program statement(s). In the con-
text of notebooks, backward program slicing captures the lineage
required to reproduce the outputs of one or more cells; e.g., to
“gather” code that was written in an ad-hoc fashion, potentially
out-of-order across multiple notebook cells, into a clean script that
reliably reproduces the data scientist’s analyses. The more compact
this slice is, the smaller the lineage, meaning it is more e�cient to
re-execute for reproducibility while preserving accuracy.

Forward program slicing also has applications in data science
work�ows in computational notebooks. In the context of notebooks,
a forward program slice determines the set of cells that are a�ected
by a given cell, and can be combined with other analysis techniques
to automatically (or reactively [14, 40, 44, 58]) re-execute all the
cells that could be a�ected (via data dependencies) by some other
cell, ensuring that cells do not become stale. A reactivity tool for
notebooks can be thought of as performing a form of materialized
view maintenance — speci�cally, “refreshing" the notebook after
an earlier cell is rerun by re-executing dependent cells. Such reac-
tivity features help to push the burden of tracking what cells have
become stale away from the user and down into the notebook ker-
nel. This feature is particularly helpful for data science work�ows,
which can involve toggling many values (e.g., hyperparameters)
and re-executing what might be dozens of downstream data trans-
formation dependencies. Once again, correctness (i.e., making sure
we are rerunning everything a�ected) while minimizing slice size
(i.e.,only rerunning what is needed) is key to ensuring interactivity
during exploratory data analysis.
Notebook-Centric Slicing: Challenges. Backward and forward
slicing can help automate away some of the messiness inherent
in notebook-resident data science work�ows and thereby improve
downstream reproducibility. Ideally, slices should be as small as
possible in order to eliminate extraneous computation, while pre-
serving correctness of the underlying program. However, computa-
tion of slices that are simultaneous small and accurate, and without
noticeable degradation of existing notebook behavior and perfor-
mance, is di�cult to achieve in practice. We now outline challenges
we faced while developing ��������, a state-of-the-art dynamic
slicer optimized speci�cally for the notebook setting, along with
contributions that addressed each challenge.
Challenge 1: Small and accurate program slices. Backward slic-
ing was �rst explored in the context of code gathering in note-
books by Head et al. [27]. However, it is not di�cult to construct
cases wherein the static slicing technique used in [27] will yield

Shankar et al. [2022b] (VLDB 2023)

Towards Observability for
Production Machine Learning Pipelines

[Vision Paper]

Shreya Shankar
UC Berkeley

shreyashankar@berkeley.edu

Aditya G. Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT
Software organizations are increasingly incorporating machine learning
(ML) into their product o�erings, driving a need for new data manage-
ment tools. Many of these tools facilitate the initial development of ML
applications, but sustaining these applications post-deployment is di�cult
due to lack of real-time feedback (i.e., labels) for predictions and silent
failures that could occur at any component of the ML pipeline (e.g., data
distribution shift or anomalous features). We propose a new type of data
management system that o�ers end-to-end observability, or visibility into
complex system behavior, for deployed ML pipelines through assisted (1)
detection, (2) diagnosis, and (3) reaction to ML-related bugs. We describe
new research challenges and suggest preliminary solution ideas in all three
aspects. Finally, we introduce an example architecture for a “bolt-on” ML
observability system, or one that wraps around existing tools in the stack.

1 INTRODUCTION
Organizations are devoting increasingly more resources towards de-
veloping and deploying applications powered by machine learning
(ML). ML applications rely on pipelines that span multiple heteroge-
neous stages or components, such as feature generation and model
training, requiring specialized data management tools. Most work
in data management for ML concentrates on speci�c components,
e.g., preprocessing [1, 2], or model training [3, 4, 5, 6]. Additionally,
some industry solutions have garnered widespread adoption by
handling data management issues that stem from experimenting
with models [7, 8].

However, there are many unaddressed challenges in sustaining
ML pipelines once built: maintaining, debugging, and improving
them after the initial deployment. Various best practices for “pro-
duction ML” and failure case studies highlight the dire need for ML
sustainability [9, 10]. We posit that for sustainability, ML practi-
tioners should be able to (1) detect, (2) diagnose, and (3) react to
bugs post-deployment. Compared to traditional software systems,
which typically only break when there are infrastructure issues,
ML pipelines can also fail unpredictably due to data issues—and
therefore are uniquely challenging to sustain in all three aspects.
Bug Detection: Hard Due to Feedback Delays. It is well-known
that data distributions change or shift over time, causing model
performance to drop [11, 12]. Detecting performance drops post-
deployment is challenging due to lack of “ground-truth” data: in
many production ML systems, feedback on predictions, or labels,
can arrive at a later time. Furthermore, in many pipelines, only a
few labels arrive (e.g., labelers manually annotate some predictions,
or only a handful of predicted outputs are displayed to the user).
As a result, practitioners are unable to monitor simple ML metrics
such as accuracy in real-time. As an alternative, end-to-end ML
frameworks such as TFX [13] and Sagemaker [14] monitor internal
pipeline state or health via distance metrics [15] over distributions
of ML features and outputs over time. These proxies often produce

too many false positives and thus do not accurately determine when
models are underperforming, as we will discuss further in Section 2.
Bug Diagnosis: Hard Due to Pipeline Complexity. Even if a
failure is con�dently detected, the complex, highly intertwined
nature of components in the ML pipeline makes it hard to under-
stand where bugs could lie. For production ML pipelines, “changing
anything changes everything (CACE),” causing predictions to vary
unpredictably [10]. Consequently, production ML uniquely suf-
fers from silent pipeline bugs, such as corrupted or stale subsets
of features. Practitioners painstakingly enumerate and maintain
(i.e., tune) data quality constraints for component inputs and out-
puts [16, 17], motivating automatic speci�cation and maintenance
of precise constraints at the component level.
Bug Fixes: Hard Due to No Obviously Correct Answers. Even
if users can successfully pinpoint all pipeline bugs, there can be
many ways to bring model performance back up to a desirable
level, and e�ectiveness depends on the nature of the data or task.
For example, di�erent components, when �xed, can cause di�erent
magnitudes of improvement in ML performance. Users often have
no sense of what to �x �rst, relative to the costs in resources and
time.
ML Observability. The challenges outlined above motivate the
need for observability [18], or “better visibility into understanding
the complex behavior of software using telemetry collected ... at run
time” [19], tailored for ML pipelines. Observability encompasses
more than just monitoring prede�ned metrics that capture holistic
system health (i.e., known-unknowns)—it also allows practitioners
to ask questions about how systems behaved on historical out-
puts (i.e., unknown-unknowns), or perform “needle-in-a-haystack”
queries. The north star for software observability systems is to give
users the power to ask new questions of historical system behavior
without gathering new data [20].
Contributions. In this paper, we discuss unaddressed research
challenges in ML observability as a call-to-arms for the database
community to contribute to this nascent research direction. We
propose the concept of a “bolt-on” observability system for ML
pipelines—one that does not require users to rewrite all their code to
use a speci�c framework. ML application developers assemble their
pipelines in an ad-hoc manner employing a myriad of tools along
the way, and our bolt-on observability system must interoperate
with such heterogeneous pipelines. For example, practitioners may
use a Hive metastore to catalog raw data [21], Deequ for data
validation [17], and Weights & Biases for experiment tracking [8].

For our bolt-on observability system to address bug detection,
diagnosis, and �xing needs, we propose a three-pronged approach:
(1) Monitoring approximations of top-line, i.e., business-critical, ML
metrics to alert users of ML performance drops even when there
may not be real-time labels. In Section 3.3, we propose automated
techniques that rely on lightweight proxies to bin predictions and

ar
X

iv
:2

10
8.

13
55

7v
3

 [c
s.S

E]
 1

5
Ju

l 2
02

2

Shankar and Parameswaran

[2022] (VLDB 2023)

Hindsight Logging across Model Training Versions
Rolando Garcia

UC Berkeley
rogarcia@berkeley.edu

Anusha Dandamudi
UC Berkeley

adandamudi@berkeley.edu

Gabriel Matute
UC Berkeley

gmatute@berkeley.edu

Joseph Gonzalez
UC Berkeley

jegonzal@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Koushik Sen
UC Berkeley

ksen@berkeley.edu

ABSTRACT
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui o�cia deserunt mollit anim id est laborum. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in repre-
henderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
o�cia deserunt mollit anim id est laborum. Ut enim ad minim ve-
niam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident, sunt in culpa qui o�cia
deserunt mollit anim id est laborum.

PVLDB Reference Format:
Rolando Garcia, Anusha Dandamudi, Gabriel Matute, Joseph Gonzalez,
Joseph M. Hellerstein, and Koushik Sen. Hindsight Logging across Model
Training Versions. PVLDB, V(I): pp-pp, 2022. doi:10.14777/3433333.3436925

1 INTRODUCTION
Enterprise solutions for machine learning are marketed to train
and score hundreds of thousands of models in a single day [1, 13].
As businesses grow and move to operationalize machine learning,
they confront increasingly more cumbersome data management
problems arising from the many versions and big metadata (i.e.
context) of model training at scale [9, 19]. In this paper, we de�ne the
structure and characterize the content of training context—across
versions—of predictive models (Sec 2), posit a relational data model
for querying and maintaining such context (Sec 3), and present
hindsight featurization, a novel approach and implementation for
back-�lling additional context, from the beginning of history, as
needed to answer ad-hoc queries about training (Sec 4-5).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. V, No. I
ISSN 2150–8097.
doi:10.14777/3433333.3436925

1.1 Model Training Histories & Featurization
At every step of exploration, model developers routinely track
and visualize time series data to diagnose common training prob-
lems such as exploding/vanishing gradients [11], dead ReLUs [14],
and reward hacking [3]. Model developers use state-of-the-art log-
gers specialized to machine learning (e.g. TensorBoard [10], and
WandB [2]) to e�ciently trace and visualize data as it changes over
time. The following are common examples of times series data
logged during the execution of model training:

• Parameters & Metrics: The loss, accuracy, learning rate,
and other values as they change over time.

• Tensor Histograms: Histograms of weights, gradients, ac-
tivations, and other tensors as they change over time.

• Images & Overlays: Segmentation masks, bounding boxes,
embeddings, and other transformed images as they change
over time.

1.1.1 Histories. In addition to generating large volumes of data per
run, model developers routinely sweep hundreds of training ver-
sions in the course of development [18, 19]. In this paper, we de�ne
“model training history” as all the execution data of model training
across versions. Beyond diagnostics, model training histories are
used for model tuning, experiment management, and continuous
integration.

1.1.2 Featurization. Logging libraries for ML capture enough aux-
iliary metadata when they intercept runtime values, that we can
consider them featurization tools. For example, when model devel-
opers log the training loss over time, the logging statement they
invoke also collects information such as the timestamp of the run,
the absolute path of the main script, the epoch and step counts,
and the name of the value. All this metadata forms the address of
the value, and every such value is a feature of model training. We
defer a more formal treatment of training features until Section 2,
but for now, it su�ces to say that the data written by ML loggers
(e.g. Weights & Biases) is automatically prepared for entry into
relational tables, and model developers are familiar with training
featurization.

1.2 Hindsight Featurization: Scenarios
Next, we look at three di�erent scenarios to illustrate the rich
diversity of queries over training histories:

• This data looks wrong! Alice logs the segmentation masks
for a sample of data points, as they change during training.
She worries that the masks appear shifted, and she wants to

Hindsight logging in model

training (in progress)

Moving Fast With Broken Data
����: an Automatic Data Validation System for ML Pipelines

Shreya Shankar†1, Labib Fawaz2, Karl Gyllstrom2, Aditya G. Parameswaran1
1University of California, Berkeley {shreyashankar,adityagp}@berkeley.edu

2Meta {labibfawaz,gylls}@fb.com
†Work performed while �rst author was at Meta

ABSTRACT
At Meta, we have many machine learning (ML) models in produc-
tion, each of which automatically retrain on large datasets that
often have a few features corrupted (due to engineering bugs). Con-
sequently, models will automatically retrain on erroneous partitions
of data, motivating a system to detect data issues and block retrain-
ing quickly—before downstream ML models regress. This system
is hard to build: in a world where some data is almost always cor-
rupted, which partitions are corrupted enough to gate retraining?
Gating too often yields stale model snapshots in production; gating
too little yields broken model snapshots in production.

In this paper, we present unique challenges associated with data
validation for ML pipelines at industrial scale. We introduce ����,
our high-precision and high-recall alerting system that pro�les
continually-changing training datasets in production ML pipelines.
���� identi�es data issues that cause downstream ML model per-
formance drops through intra-feature, inter-feature, and temporal
data validation. We discuss two case studies on Meta’s ML pipelines,
demonstrating ����’s performance and analyzing why baseline
automatic data validation methods achieve poor precision.

1 INTRODUCTION
Meta’s machine learning (ML) infrastructure powers tens of thou-
sands of production ML pipelines, or data pipelines consisting of
one or more ML models that generate predictions for downstream
applications (e.g., ad recommendation, feed ranking, content mod-
eration). Since these pipelines must continuously serve predictions
over time, even as data changes, their corresponding models train
in recurring mode—i.e., they frequently retrain, several times a day,
on a recent set of timestamped partitions of data. A partition for
an hour of features (i.e., input data to the model) can be as large as
several petabytes.

Recurring mode, at our scale, can be a headache. It is almost
always the case that engineering bugs (outside model developers’
control) corrupt some features. For example, suppose a new release
of the Instagram app doesn’t respond to the mute button and thus
corrupts audio features for a recommendation model. Recurring
mode will create a new, broken model snapshot (trained on an
erroneous partition of data) and replace the existing production
snapshot. Unfortunately, the production impact of corruption isn’t
realized until the snapshot is published: in our example, if the
corruption is large enough, the model’s overall click-through rate
(CTR) will decrease until an engineer �xes the audio bug, which
could take several hours or days.

Ideally, we could intervene at the model retraining stage and
block the promotion of a model snapshot if necessary. Our team,

⌧1

⌧2

⌧3

⌧4

Decorrelation
(Inter-feature validation)

completeness 0.8
`: 0.12
f : 0.3

unique vals: 2.2
top frequency: -1.3

Wass-1: -1.3

Anomaly Matrix Creation
(Intra-feature validation)

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.4
...
�0.4

...
0.2

...
0.6

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 3

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.6
...
�0.7

...
0.3

...
0.2

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 2

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.8
...
�0.9

...
3.3

...
0.4

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 1

Alert Generation
(Temporal validation)

feature completeness . . .

f1 0.1 ...f2 6.5
...

...
...

...
...

...

Feature Drill-Down
(Debugging)

Figure 1: ���� system components

AI Data Integrity (AIDI), has two goals: (1) to help ML engineers at
Meta debug ML pipelines when real-time ML pipeline performance
drops, and (2) to detect issues in training datasets across Meta
before downstream bugs occur. We’ve made signi�cant progress
in (1) with our �agship product that summarizes training dataset
partitions with statistics such as the mean, standard deviation, top
: values, and completeness (i.e., fraction of non-null values) for
each feature and model prediction. Our clients, the ML engineers
responsible for ensuring that ML pipeline performance stays high
over time, can query these summaries to debug performance drops.
However, achieving (2), or automatically validating data to detect
issues before they occur, has been an ongoing challenge. How do we
place an alert layer on top of the statistics we collect? In building
an automatic data validation system, we have to deal with the
following requirements:

(1) High-precision and high-recall alerts: Engineers explic-
itly require a minimum recall (otherwise the system will be
useless) and implicitly require a minimum precision (oth-
erwise they will not listen to the system). At �rst, we set
alerts on completeness drops—i.e., if a feature’s complete-
ness drops by more than 30%, our client gets noti�ed—but
this method produced too many false positive alerts, and
our clients thus silenced them. Moreover, clients are respon-
sible for ML pipelines consisting of features that they don’t
always create (due to organizational turnover). We found
that they initially spent signi�cant e�orts �nding a good
threshold (e.g., 30%) for alerts on completeness, then aban-
doned the approach because it’s impractical to enumerate
and carefully tune constraints and thresholds for features
they may not have context about.

(2) Ease of onboarding and use: When ML teams request
our data validation services, we must roll out a solution
immediately rather than collect data over weeks or months
(i.e., annotations of ground-truth corruptions) to tailor a
validation system speci�c to their data or pipelines. Clients
need a system that produces alerts quickly. Moreover, alerts
should be interpretable—i.e., map to a broken feature or set

Automatic data validation (in progress)

Mining feedback delays and estimating

unlabeled accuracy (in progress)

Shankar and Garcia et al.

MLOps Research Roadmap

HCI Data Systems

Operationalizing Machine Learning: An Interview Study
Shreya Shankar⇤, Rolando Garcia⇤, Joseph M. Hellerstein, Aditya G. Parameswaran

University of California, Berkeley
{shreyashankar,rogarcia,hellerstein,adityagp}@berkeley.edu

⇤Co-�rst authors

ABSTRACT
Organizations rely on machine learning engineers (MLEs) to opera-
tionalize ML, i.e., deploy and maintain ML pipelines in production.
The process of operationalizing ML, or MLOps, consists of a contin-
ual loop of (i) data collection and labeling, (ii) experimentation to
improve ML performance, (iii) evaluation throughout a multi-staged
deployment process, and (iv) monitoring of performance drops in
production. When considered together, these responsibilities seem
staggering—how does anyone do MLOps, what are the unaddressed
challenges, and what are the implications for tool builders?

We conducted semi-structured ethnographic interviews with
18 MLEs working across many applications, including chatbots,
autonomous vehicles, and �nance. Our interviews expose three
variables that govern success for a production ML deployment: Ve-
locity, Validation, and Versioning. We summarize common practices
for successful ML experimentation, deployment, and sustaining pro-
duction performance. Finally, we discuss interviewees’ pain points
and anti-patterns, with implications for tool design.

1 INTRODUCTION
As Machine Learning (ML) models are increasingly incorporated
into software, a nascent sub-�eld called MLOps (short for ML Op-
erations) has emerged to organize the “set of practices that aim
to deploy and maintain ML models in production reliably and e�-
ciently” [4, 77]. It is widely agreed that MLOps is hard. Anecdotal re-
ports claim that 90% of ML models don’t make it to production [76];
others claim that 85% of ML projects fail to deliver value [69].

At the same time, it is unclear why MLOps is hard. Our present-
day understanding of MLOps is limited to a fragmented landscape of
white papers, anecdotes, and thought pieces [14, 18, 20, 21, 34, 45],
as well as a cottage industry of startups aiming to address MLOps
issues [27]. Early work by Sculley et al. attributes MLOps chal-
lenges to “technical debt”, due to which there is “massive ongoing
maintenance costs in real-world ML systems” [64]. Most successful
ML deployments seem to involve a “team of engineers who spend a
signi�cant portion of their time on the less glamorous aspects of ML
like maintaining and monitoring ML pipelines” [54]. Prior work has
studied general practices of data analysis and science [30, 49, 62, 82],
without considering MLOps challenges of productionizing models.

There is thus a pressing need to bring clarity to MLOps, specif-
ically in identifying what MLOps typically involves—across or-
ganizations and ML applications. A richer understanding of best
practices and challenges in MLOps can surface gaps in present-day
processes and better inform the development of next-generation
tools. Therefore, we conducted a semi-structured interview study of
ML engineers (MLEs), each of whom has worked on ML models in
production. We sourced 18 participants from di�erent organizations
and applications (Table 1) and asked them open-ended questions to
understand their work�ow and day-to-day challenges.

Data Collection Experimentation Evaluation and
Deployment

Monitoring
and Response

Figure 1: Routine tasks in the ML engineering work�ow.

We �nd that MLEs perform four routine tasks, shown in Fig-
ure 1: (i) data collection, (ii) experimentation, (iii) evaluation and
deployment, and (iv) monitoring and response. Across tasks, we
observe three variables that dictate success for a production ML
deployment: Velocity, Validation, and Versioning.1 We describe
common MLOps practices, grouped under overarching �ndings:
ML engineering is very experimental in nature (Section 4.3).
As mentioned earlier, various articles claim that it is a problem for
90% of models to never make it to production [76], but we �nd that
this statistic is misguided. The nature of constant experimentation
is bound to create many versions, a small fraction of which (i.e. “the
best of the best”) will make it to production. Thus it is bene�cial
to prototype ideas quickly, by making minimal changes to existing
work�ows, and demonstrate practical bene�ts early—so that bad
models never make it far.
Operationalizing model evaluation requires an active orga-
nizational e�ort (Section 4.4). Popular model evaluation “best
practices” do not do justice to the rigor with which organiza-
tions think about deployments: they generally focus on using one
typically-static held-out dataset to evaluate the model on [38] and
a single ML metric choice (e.g., precision, recall) [1, 2]. We �nd that
MLEs invest signi�cant resources in maintaining multiple up-to-
date evaluation datasets and metrics over time—especially ensuring
that data sub-populations of interest are adequately covered.
Non-ML rules and human-in-the-loop practices keep mod-
els reliable in production (Section 4.5). We �nd that MLEs pre-
fer simple ideas, even if it means handling multiple versions: for
example, rather than leverage advanced techniques to minimize
distribution shift errors [15, 83], MLEs would simply create new
models, retrained on fresh data. MLEs ensured that deployments
were reliable via strategies such as on-call rotations, model roll-
backs, or elaborate rule-based guardrails to avoid incorrect outputs.

In Section 5, we discuss recurring MLOps challenges across all
tasks. We express these pain points as tensions and synergies be-
tween our three “V” variables—for example, undocumented “tribal
knowledge” about pipelines (Section 5.2.4) demonstrates a tension
between velocity (i.e., quickly changing the pipeline in response
to a bug) and well-executed versioning (i.e., documenting every
change). We conclude the description of each pain point with a
discussion of opportunities for future tools.

1Our Three Vs of MLOps aren’t meant to be confused with the Three Vs of Big Data
(Volume, Variety, Velocity) [61]. The �rst authors learned of the Big Data Vs after draft-
ing the MLOps Vs and were surprised to �nd similarities around volume/versioning
and velocity.

ar
X

iv
:2

20
9.

09
12

5v
1

 [c
s.S

E]
 1

6
Se

p
20

22

Shankar et al. [2022a] (under review)

Bolt-on, Compact, and Rapid
Program Slicing for Notebooks [Technical Report]

Shreya Shankar†1, Stephen Macke†2, Sarah Chasins1, Andrew Head3, Aditya Parameswaran1
1University of California, Berkeley {shreyashankar,schasins,adityagp}@berkeley.edu

2Una�liated stephen.macke@gmail.com
3University of Pennsylvania head@seas.upenn.edu

†Equal contribution (order determined by coin �ip)

ABSTRACT
Computational notebooks are commonly used for iterative work-
�ows, such as in exploratory data analysis. This process lends itself
to the accumulation of old code and hidden state, making it hard
for users to reason about the lineage of, e.g., plots depicting in-
sights or trained machine learning models. One way to reason
about code used to generate various notebook data artifacts is to
compute a program slice, but traditional static approaches to slic-
ing can be both inaccurate (failing to contain relevant code for
artifacts) and conservative (containing unnecessary code for an
artifacts). We present ��������, a dynamic slicer optimized for the
notebook setting whose instrumentation for resolving dynamic data
dependencies is both bolt-on (and therefore portable) and switchable
(allowing it to be selectively disabled in order to reduce instrumen-
tation overhead). We demonstrate ��������’s ability to construct
small and accurate backward slices (i.e., historical cell dependencies)
and forward slices (i.e., cells a�ected by the "rerun" of an earlier cell),
thereby improving reproducibility in notebooks and enabling faster
reactive re-execution, respectively. Comparing �������� with a
static slicer on 374 real notebook sessions, we found that ��������
�lters out far more super�uous program statements while main-
taining slice correctness, giving slices that are, on average, 66% and
54% smaller for backward and forward slices, respectively.

1 INTRODUCTION
Computational notebooks, and Project Jupyter [37] in particular,
have revolutionized the work�ows of data scientists [48, 49]. Note-
books admit a �exible execution model that segments units of com-
putation into so-called “cells” that can easily be back-referenced for
editing, duplication, or reordering, with intermediate program state
persisted to memory between subsequent cell executions. This it-
erative cell-based execution modality is ideal for rapid prototyping
and testing of hypotheses, a cornerstone of typical data science
work, and has led to their extensive usage—as of October 2020,
there were nearly 10 million notebooks available on GitHub [24].
Notebooks are Messy. The popularity of notebooks has come
with increased scrutiny; as such, notebooks now have a number
of well-documented disadvantages, related primarily to their ten-
dency to accumulate cruft in the form of both visible notebook code
[31, 35, 53] and invisible in-memory program state [22]. Data sci-
ence work�ows, in particular, tend to be exploratory in nature [35].
These �aws can make execution behavior in notebooks di�cult to
reason about and cause misleading or incorrect �ndings, leading
to confusion during ad-hoc exploration, prototyping, and iteration.
Organizing Notebook Iteration with Program Slicing. To ad-
dress notebook shortcomings, recent work has developed approaches

based on backward program slicing to gather code in messy note-
books [27, 33], thereby making it easier for data scientists to retrace
their steps. Traditionally applied to program debugging [7, 61],
program slicing determines a (typically smaller) subset of program
statements that a�ect some other program statement(s). In the con-
text of notebooks, backward program slicing captures the lineage
required to reproduce the outputs of one or more cells; e.g., to
“gather” code that was written in an ad-hoc fashion, potentially
out-of-order across multiple notebook cells, into a clean script that
reliably reproduces the data scientist’s analyses. The more compact
this slice is, the smaller the lineage, meaning it is more e�cient to
re-execute for reproducibility while preserving accuracy.

Forward program slicing also has applications in data science
work�ows in computational notebooks. In the context of notebooks,
a forward program slice determines the set of cells that are a�ected
by a given cell, and can be combined with other analysis techniques
to automatically (or reactively [14, 40, 44, 58]) re-execute all the
cells that could be a�ected (via data dependencies) by some other
cell, ensuring that cells do not become stale. A reactivity tool for
notebooks can be thought of as performing a form of materialized
view maintenance — speci�cally, “refreshing" the notebook after
an earlier cell is rerun by re-executing dependent cells. Such reac-
tivity features help to push the burden of tracking what cells have
become stale away from the user and down into the notebook ker-
nel. This feature is particularly helpful for data science work�ows,
which can involve toggling many values (e.g., hyperparameters)
and re-executing what might be dozens of downstream data trans-
formation dependencies. Once again, correctness (i.e., making sure
we are rerunning everything a�ected) while minimizing slice size
(i.e.,only rerunning what is needed) is key to ensuring interactivity
during exploratory data analysis.
Notebook-Centric Slicing: Challenges. Backward and forward
slicing can help automate away some of the messiness inherent
in notebook-resident data science work�ows and thereby improve
downstream reproducibility. Ideally, slices should be as small as
possible in order to eliminate extraneous computation, while pre-
serving correctness of the underlying program. However, computa-
tion of slices that are simultaneous small and accurate, and without
noticeable degradation of existing notebook behavior and perfor-
mance, is di�cult to achieve in practice. We now outline challenges
we faced while developing ��������, a state-of-the-art dynamic
slicer optimized speci�cally for the notebook setting, along with
contributions that addressed each challenge.
Challenge 1: Small and accurate program slices. Backward slic-
ing was �rst explored in the context of code gathering in note-
books by Head et al. [27]. However, it is not di�cult to construct
cases wherein the static slicing technique used in [27] will yield

Shankar et al. [2022b] (VLDB 2023)

Towards Observability for
Production Machine Learning Pipelines

[Vision Paper]

Shreya Shankar
UC Berkeley

shreyashankar@berkeley.edu

Aditya G. Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT
Software organizations are increasingly incorporating machine learning
(ML) into their product o�erings, driving a need for new data manage-
ment tools. Many of these tools facilitate the initial development of ML
applications, but sustaining these applications post-deployment is di�cult
due to lack of real-time feedback (i.e., labels) for predictions and silent
failures that could occur at any component of the ML pipeline (e.g., data
distribution shift or anomalous features). We propose a new type of data
management system that o�ers end-to-end observability, or visibility into
complex system behavior, for deployed ML pipelines through assisted (1)
detection, (2) diagnosis, and (3) reaction to ML-related bugs. We describe
new research challenges and suggest preliminary solution ideas in all three
aspects. Finally, we introduce an example architecture for a “bolt-on” ML
observability system, or one that wraps around existing tools in the stack.

1 INTRODUCTION
Organizations are devoting increasingly more resources towards de-
veloping and deploying applications powered by machine learning
(ML). ML applications rely on pipelines that span multiple heteroge-
neous stages or components, such as feature generation and model
training, requiring specialized data management tools. Most work
in data management for ML concentrates on speci�c components,
e.g., preprocessing [1, 2], or model training [3, 4, 5, 6]. Additionally,
some industry solutions have garnered widespread adoption by
handling data management issues that stem from experimenting
with models [7, 8].

However, there are many unaddressed challenges in sustaining
ML pipelines once built: maintaining, debugging, and improving
them after the initial deployment. Various best practices for “pro-
duction ML” and failure case studies highlight the dire need for ML
sustainability [9, 10]. We posit that for sustainability, ML practi-
tioners should be able to (1) detect, (2) diagnose, and (3) react to
bugs post-deployment. Compared to traditional software systems,
which typically only break when there are infrastructure issues,
ML pipelines can also fail unpredictably due to data issues—and
therefore are uniquely challenging to sustain in all three aspects.
Bug Detection: Hard Due to Feedback Delays. It is well-known
that data distributions change or shift over time, causing model
performance to drop [11, 12]. Detecting performance drops post-
deployment is challenging due to lack of “ground-truth” data: in
many production ML systems, feedback on predictions, or labels,
can arrive at a later time. Furthermore, in many pipelines, only a
few labels arrive (e.g., labelers manually annotate some predictions,
or only a handful of predicted outputs are displayed to the user).
As a result, practitioners are unable to monitor simple ML metrics
such as accuracy in real-time. As an alternative, end-to-end ML
frameworks such as TFX [13] and Sagemaker [14] monitor internal
pipeline state or health via distance metrics [15] over distributions
of ML features and outputs over time. These proxies often produce

too many false positives and thus do not accurately determine when
models are underperforming, as we will discuss further in Section 2.
Bug Diagnosis: Hard Due to Pipeline Complexity. Even if a
failure is con�dently detected, the complex, highly intertwined
nature of components in the ML pipeline makes it hard to under-
stand where bugs could lie. For production ML pipelines, “changing
anything changes everything (CACE),” causing predictions to vary
unpredictably [10]. Consequently, production ML uniquely suf-
fers from silent pipeline bugs, such as corrupted or stale subsets
of features. Practitioners painstakingly enumerate and maintain
(i.e., tune) data quality constraints for component inputs and out-
puts [16, 17], motivating automatic speci�cation and maintenance
of precise constraints at the component level.
Bug Fixes: Hard Due to No Obviously Correct Answers. Even
if users can successfully pinpoint all pipeline bugs, there can be
many ways to bring model performance back up to a desirable
level, and e�ectiveness depends on the nature of the data or task.
For example, di�erent components, when �xed, can cause di�erent
magnitudes of improvement in ML performance. Users often have
no sense of what to �x �rst, relative to the costs in resources and
time.
ML Observability. The challenges outlined above motivate the
need for observability [18], or “better visibility into understanding
the complex behavior of software using telemetry collected ... at run
time” [19], tailored for ML pipelines. Observability encompasses
more than just monitoring prede�ned metrics that capture holistic
system health (i.e., known-unknowns)—it also allows practitioners
to ask questions about how systems behaved on historical out-
puts (i.e., unknown-unknowns), or perform “needle-in-a-haystack”
queries. The north star for software observability systems is to give
users the power to ask new questions of historical system behavior
without gathering new data [20].
Contributions. In this paper, we discuss unaddressed research
challenges in ML observability as a call-to-arms for the database
community to contribute to this nascent research direction. We
propose the concept of a “bolt-on” observability system for ML
pipelines—one that does not require users to rewrite all their code to
use a speci�c framework. ML application developers assemble their
pipelines in an ad-hoc manner employing a myriad of tools along
the way, and our bolt-on observability system must interoperate
with such heterogeneous pipelines. For example, practitioners may
use a Hive metastore to catalog raw data [21], Deequ for data
validation [17], and Weights & Biases for experiment tracking [8].

For our bolt-on observability system to address bug detection,
diagnosis, and �xing needs, we propose a three-pronged approach:
(1) Monitoring approximations of top-line, i.e., business-critical, ML
metrics to alert users of ML performance drops even when there
may not be real-time labels. In Section 3.3, we propose automated
techniques that rely on lightweight proxies to bin predictions and

ar
X

iv
:2

10
8.

13
55

7v
3

 [c
s.S

E]
 1

5
Ju

l 2
02

2

Shankar and Parameswaran

[2022] (VLDB 2023)

Hindsight Logging across Model Training Versions
Rolando Garcia

UC Berkeley
rogarcia@berkeley.edu

Anusha Dandamudi
UC Berkeley

adandamudi@berkeley.edu

Gabriel Matute
UC Berkeley

gmatute@berkeley.edu

Joseph Gonzalez
UC Berkeley

jegonzal@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Koushik Sen
UC Berkeley

ksen@berkeley.edu

ABSTRACT
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui o�cia deserunt mollit anim id est laborum. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in repre-
henderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
o�cia deserunt mollit anim id est laborum. Ut enim ad minim ve-
niam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident, sunt in culpa qui o�cia
deserunt mollit anim id est laborum.

PVLDB Reference Format:
Rolando Garcia, Anusha Dandamudi, Gabriel Matute, Joseph Gonzalez,
Joseph M. Hellerstein, and Koushik Sen. Hindsight Logging across Model
Training Versions. PVLDB, V(I): pp-pp, 2022. doi:10.14777/3433333.3436925

1 INTRODUCTION
Enterprise solutions for machine learning are marketed to train
and score hundreds of thousands of models in a single day [1, 13].
As businesses grow and move to operationalize machine learning,
they confront increasingly more cumbersome data management
problems arising from the many versions and big metadata (i.e.
context) of model training at scale [9, 19]. In this paper, we de�ne the
structure and characterize the content of training context—across
versions—of predictive models (Sec 2), posit a relational data model
for querying and maintaining such context (Sec 3), and present
hindsight featurization, a novel approach and implementation for
back-�lling additional context, from the beginning of history, as
needed to answer ad-hoc queries about training (Sec 4-5).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. V, No. I
ISSN 2150–8097.
doi:10.14777/3433333.3436925

1.1 Model Training Histories & Featurization
At every step of exploration, model developers routinely track
and visualize time series data to diagnose common training prob-
lems such as exploding/vanishing gradients [11], dead ReLUs [14],
and reward hacking [3]. Model developers use state-of-the-art log-
gers specialized to machine learning (e.g. TensorBoard [10], and
WandB [2]) to e�ciently trace and visualize data as it changes over
time. The following are common examples of times series data
logged during the execution of model training:

• Parameters & Metrics: The loss, accuracy, learning rate,
and other values as they change over time.

• Tensor Histograms: Histograms of weights, gradients, ac-
tivations, and other tensors as they change over time.

• Images & Overlays: Segmentation masks, bounding boxes,
embeddings, and other transformed images as they change
over time.

1.1.1 Histories. In addition to generating large volumes of data per
run, model developers routinely sweep hundreds of training ver-
sions in the course of development [18, 19]. In this paper, we de�ne
“model training history” as all the execution data of model training
across versions. Beyond diagnostics, model training histories are
used for model tuning, experiment management, and continuous
integration.

1.1.2 Featurization. Logging libraries for ML capture enough aux-
iliary metadata when they intercept runtime values, that we can
consider them featurization tools. For example, when model devel-
opers log the training loss over time, the logging statement they
invoke also collects information such as the timestamp of the run,
the absolute path of the main script, the epoch and step counts,
and the name of the value. All this metadata forms the address of
the value, and every such value is a feature of model training. We
defer a more formal treatment of training features until Section 2,
but for now, it su�ces to say that the data written by ML loggers
(e.g. Weights & Biases) is automatically prepared for entry into
relational tables, and model developers are familiar with training
featurization.

1.2 Hindsight Featurization: Scenarios
Next, we look at three di�erent scenarios to illustrate the rich
diversity of queries over training histories:

• This data looks wrong! Alice logs the segmentation masks
for a sample of data points, as they change during training.
She worries that the masks appear shifted, and she wants to

Hindsight logging in model

training (in progress)

Moving Fast With Broken Data
����: an Automatic Data Validation System for ML Pipelines

Shreya Shankar†1, Labib Fawaz2, Karl Gyllstrom2, Aditya G. Parameswaran1
1University of California, Berkeley {shreyashankar,adityagp}@berkeley.edu

2Meta {labibfawaz,gylls}@fb.com
†Work performed while �rst author was at Meta

ABSTRACT
At Meta, we have many machine learning (ML) models in produc-
tion, each of which automatically retrain on large datasets that
often have a few features corrupted (due to engineering bugs). Con-
sequently, models will automatically retrain on erroneous partitions
of data, motivating a system to detect data issues and block retrain-
ing quickly—before downstream ML models regress. This system
is hard to build: in a world where some data is almost always cor-
rupted, which partitions are corrupted enough to gate retraining?
Gating too often yields stale model snapshots in production; gating
too little yields broken model snapshots in production.

In this paper, we present unique challenges associated with data
validation for ML pipelines at industrial scale. We introduce ����,
our high-precision and high-recall alerting system that pro�les
continually-changing training datasets in production ML pipelines.
���� identi�es data issues that cause downstream ML model per-
formance drops through intra-feature, inter-feature, and temporal
data validation. We discuss two case studies on Meta’s ML pipelines,
demonstrating ����’s performance and analyzing why baseline
automatic data validation methods achieve poor precision.

1 INTRODUCTION
Meta’s machine learning (ML) infrastructure powers tens of thou-
sands of production ML pipelines, or data pipelines consisting of
one or more ML models that generate predictions for downstream
applications (e.g., ad recommendation, feed ranking, content mod-
eration). Since these pipelines must continuously serve predictions
over time, even as data changes, their corresponding models train
in recurring mode—i.e., they frequently retrain, several times a day,
on a recent set of timestamped partitions of data. A partition for
an hour of features (i.e., input data to the model) can be as large as
several petabytes.

Recurring mode, at our scale, can be a headache. It is almost
always the case that engineering bugs (outside model developers’
control) corrupt some features. For example, suppose a new release
of the Instagram app doesn’t respond to the mute button and thus
corrupts audio features for a recommendation model. Recurring
mode will create a new, broken model snapshot (trained on an
erroneous partition of data) and replace the existing production
snapshot. Unfortunately, the production impact of corruption isn’t
realized until the snapshot is published: in our example, if the
corruption is large enough, the model’s overall click-through rate
(CTR) will decrease until an engineer �xes the audio bug, which
could take several hours or days.

Ideally, we could intervene at the model retraining stage and
block the promotion of a model snapshot if necessary. Our team,

⌧1

⌧2

⌧3

⌧4

Decorrelation
(Inter-feature validation)

completeness 0.8
`: 0.12
f : 0.3

unique vals: 2.2
top frequency: -1.3

Wass-1: -1.3

Anomaly Matrix Creation
(Intra-feature validation)

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.4
...
�0.4

...
0.2

...
0.6

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 3

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.6
...
�0.7

...
0.3

...
0.2

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 2

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.8
...
�0.9

...
3.3

...
0.4

...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ̈
C � 1

Alert Generation
(Temporal validation)

feature completeness . . .

f1 0.1 ...f2 6.5
...

...
...

...
...

...

Feature Drill-Down
(Debugging)

Figure 1: ���� system components

AI Data Integrity (AIDI), has two goals: (1) to help ML engineers at
Meta debug ML pipelines when real-time ML pipeline performance
drops, and (2) to detect issues in training datasets across Meta
before downstream bugs occur. We’ve made signi�cant progress
in (1) with our �agship product that summarizes training dataset
partitions with statistics such as the mean, standard deviation, top
: values, and completeness (i.e., fraction of non-null values) for
each feature and model prediction. Our clients, the ML engineers
responsible for ensuring that ML pipeline performance stays high
over time, can query these summaries to debug performance drops.
However, achieving (2), or automatically validating data to detect
issues before they occur, has been an ongoing challenge. How do we
place an alert layer on top of the statistics we collect? In building
an automatic data validation system, we have to deal with the
following requirements:

(1) High-precision and high-recall alerts: Engineers explic-
itly require a minimum recall (otherwise the system will be
useless) and implicitly require a minimum precision (oth-
erwise they will not listen to the system). At �rst, we set
alerts on completeness drops—i.e., if a feature’s complete-
ness drops by more than 30%, our client gets noti�ed—but
this method produced too many false positive alerts, and
our clients thus silenced them. Moreover, clients are respon-
sible for ML pipelines consisting of features that they don’t
always create (due to organizational turnover). We found
that they initially spent signi�cant e�orts �nding a good
threshold (e.g., 30%) for alerts on completeness, then aban-
doned the approach because it’s impractical to enumerate
and carefully tune constraints and thresholds for features
they may not have context about.

(2) Ease of onboarding and use: When ML teams request
our data validation services, we must roll out a solution
immediately rather than collect data over weeks or months
(i.e., annotations of ground-truth corruptions) to tailor a
validation system speci�c to their data or pipelines. Clients
need a system that produces alerts quickly. Moreover, alerts
should be interpretable—i.e., map to a broken feature or set

Automatic data validation (in progress)

Mining feedback delays and estimating

unlabeled accuracy (in progress)

Shankar and Garcia et al.

Thank you!

Shankar and Garcia et al.

References i

Shreya Shankar and Aditya Parameswaran. Towards observability for
production machine learning pipelines, 2022. URL
https://arxiv.org/abs/2108.13557.

Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and
Aditya G. Parameswaran. Operationalizing machine learning: An
interview study, 2022a. URL
https://arxiv.org/abs/2209.09125.

Shreya Shankar, Stephen Macke, Sarah Chasins, Andrew Head, and
Aditya Parameswaran. Bolt-on, compact, and rapid program slicing
for notebooks [technical report]. 2022b.

Shankar and Garcia et al.

https://arxiv.org/abs/2108.13557
https://arxiv.org/abs/2209.09125

	A New Wave of Software Engineering
	ML is Hard to Operationalize

	Characterizing the Production ML Workflow
	MLOps Practices
	Operationalizing evaluation requires active efforts
	Non-ML rules and human-in-the-loop practices keep models reliable in production

	MLOps Pain Points
	Current and Future Work
	References

