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A New Wave of Software
Engineering

ML is Hard to Operationalize
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How do people put and keep ML models in
production?
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Interview Setup

| Role Company Size Sector
p1 | MLE Manager Large Autonomous vehicles
p2 MLE Medium Autonomous vehicles
p3 MLE Small Computer hardware
p4 MLE Medium Retail
p5 | MLE Manager Large Ads
p6 MLE Large Cloud computing
p7 MLE Small Finance
p8 MLE Small Bioinformatics
p10 MLE Small Banking
p11 | MLE Manager Medium Banking
pi2 MLE Large Cloud computing
p13 MLE Small Bioinformatics
pl4 MLE Medium Cybersecurity
p15 MLE Medium Fintech
p16 MLE Small Marketing and analytics
p17 MLE Medium Website builder
pi8 MLE Large Recommender systems
p19 | MLE Manager Large Ads

Small: < 100, medium-sized: 100-1000, and large: > 1000 employees.
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MLOps Practices

Operationalizing evaluation requires
active efforts
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Tips
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+ Dynamic datasets

v Check underperforming
populations

v ML and product metrics
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MLOps Practices

Non-ML rules and human-in-the-loop
practices keep models reliable in
production
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Frequently Retrain &

Why did we start training daily? As far as
I’'m aware, we wanted to start simple—we
could just have a single batch job that pro-
cesses new data and we wouldn’t need to
worry about separate retraining schedules.
You don't really need to worry about if your

‘ model has gone stale if you're retraining it
A every day. (P14)
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Validate Inputs and Outputs A

Set alerts when data is corrupted, e.g.,

¢ Hard constraints/bounds for features (P2)
e “Common-sense checks” like nonnegativity (P16)
e Schemal/type checks (P8)

Example Feature: User Age
v <125

v Nonnegative

v Integer
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X Set and forget

Shankar and Garcia et al.



Sustaining Model Performance |2

Myths Tips

X Build models “robust” to v Frequently retrain models on
data distribution shift latest data

X Always serve the latest model’'s v Maintain simple models and
predictions heuristics for rollback

X Validate only the outputs + Validate inputs and outputs
X Set and forget + On-call rotations and SLAs
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Dev-Prod Environment Mismatch &

e Data leakage
e Jupyter notebook usage
" o Code reviews
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ing [practices]. At this point, I'm feeling more con-
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[practices]—[not] because they’re lazy, [but be-
cause software engineering practices are] contra-
dictory to the agility of analysis and exploration.
(P6)
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Data Validation: Alert Fatigue &

e Many alerts triggered even
when ML performance is fine

¢ On-call rotations are scary!
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You typically ignore most alerts...I guess on record
I'd say 90% of them aren’t immediate. You just
have to acknowledge them [internally], like just be
aware that there is something happening. (P18)
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Taming the Long Tail of ML Bugs ¥¥

e “| just sort of poked around
until, at some point, | figured
[it] out” (P16)

¢ Slicing and dicing data

e Paranoia induced by
debugging trauma
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ML [bugs] don’t get caught by tests or production
systems and just silently cause errors [that man-
ifest as] slight reductions in performance. This is
why [you] need to be paranoid when you’re writing

ML code. (P1)
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