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Domain experts
(Law, medicine, science, ...)

No time to learn to code!



  

Program synthesis

Automatic generation of code that satisfies a 

user-provided specification



  

Research question

What aspects of program synthesizers contribute to and 

detract from their learnability by novice programmers?

➡ Qualitative methods!

➡ Observe + interview novice programmers working with synthesizers

➥ We provided previously-released synthesizers + tasks

➡ Thematic analysis
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Understand
user misconceptions

⇓
Make systems to proactively combat them

Understand
learnability implications of tool characteristics

⇓
Make empirically-supported design decisions

Tool characteristics User misconceptions

Why are these important?
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Voluntary specification

“Is there anywhere I can type the 

regex directly then?”

“So I’m not allowed to type my own 

code, I have to do it this way?”

(New process to create specification)



  

Incidental specification

“Oh! That is very convenient. I 

didn’t have to type anything except 

for the first cell.”

“Oh cool! Okay, so I just have to 

write code normally.”

(Existing process to create specification)



  

Voluntary
Specification

Incidental
Specification

User-Triggered 
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication



  

Voluntary
Specification

Incidental
Specification

User-Triggered 
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication



  

User-triggered initiation

Incidental specification, but still 

user-triggered initiation

“I wasn’t sure when to stop adding 

examples because I thought I had to 

add one for every possible input.”

(User decides when to run synthesis)



  

Triggerless initiation

➡ Completely circumvents needing to 
know how much information to provide!

➡ … But sometimes fully automatic is 
unpredictable

(Synthesizer decides when to run synthesis)
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Triggerless initiation &
User-triggered result communication

“I didn’t really know when to 

click on it, because I didn't 

know how it could help.”
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Specification size:

Not as important!
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What makes a good specification?

➡ Triggerless tools

○ “It feels like the light bulb pops up randomly.”

➡ Example-based specifications

○ “Am I missing any cases? I feel like I covered all of the edge cases. 

Do I need to add a different example for every letter?”

➡ Lack of feedback upon failure

○ “Is there a way to check why it failed?”
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More in the paper!



  

Voluntary Specification Incidental Specification

User-Triggered Initiation Triggerless Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Incorrectly believing the 
synthesizer made progress

Incorrectly believing the 
synthesizer did not make progress

What makes a good 
specification?
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