

Exploring the Learnability

of Program Synthesizers

by Novice Programmers

Dhanya Jayagopal Justin Lubin Sarah E. Chasins

EPIC Advance, Fall 2022

Domain experts
(Law, medicine, science, ...)

No time to learn to code!

Program synthesis

Automatic generation of code that satisfies a

user-provided specification

Research question

What aspects of program synthesizers contribute to and

detract from their learnability by novice programmers?

➡ Qualitative methods!

➡ Observe + interview novice programmers working with synthesizers

➥ We provided previously-released synthesizers + tasks

➡ Thematic analysis

Results

Tool characteristics User misconceptions

Understand
user misconceptions

⇓
Make systems to proactively combat them

Understand
learnability implications of tool characteristics

⇓
Make empirically-supported design decisions

Tool characteristics User misconceptions

Why are these important?

Results

Tool characteristics User misconceptions

Results

Tool characteristics User misconceptions

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary specification

“Is there anywhere I can type the

regex directly then?”

“So I’m not allowed to type my own

code, I have to do it this way?”

(New process to create specification)

Incidental specification

“Oh! That is very convenient. I

didn’t have to type anything except

for the first cell.”

“Oh cool! Okay, so I just have to

write code normally.”

(Existing process to create specification)

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

User-triggered initiation

Incidental specification, but still

user-triggered initiation

“I wasn’t sure when to stop adding

examples because I thought I had to

add one for every possible input.”

(User decides when to run synthesis)

Triggerless initiation

➡ Completely circumvents needing to
know how much information to provide!

➡ … But sometimes fully automatic is
unpredictable

(Synthesizer decides when to run synthesis)

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Triggerless initiation &
User-triggered result communication

“I didn’t really know when to

click on it, because I didn't

know how it could help.”

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Voluntary
Specification

Incidental
Specification

User-Triggered
Initiation

Triggerless
Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Specification size:

Not as important!

Results

Tool characteristics User misconceptions

Results

Tool characteristics User misconceptions

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Incorrectly believing progress

Desired
program

Beginning
program

Incorrectly believing progress

Desired
program

Beginning
program

Incorrectly believing progress

Desired
program

Beginning
program

Incorrectly believing progress

Desired
program

Beginning
program

Incorrectly believing progress

Desired
program

Beginning
program

Incorrectly believing progress

➡ Task: Reverse a given string

➡ Participant’s first step: Split string into space-separated words

➡ Synthesis succeeds!

➡ … But now what?

Incorrectly believing progress

➡ Task: Reverse a given string

➡ Participant’s first step: Split string into space-separated words

➡ Synthesis succeeds!

➡ … But now what?

Incorrectly believing progress

➡ Task: Reverse a given string

➡ Participant’s first step: Split string into space-separated words

➡ Synthesis succeeds!

➡ … But now what?

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Incorrectly believing no progress

Incorrectly believing no progress

Incorrectly believing no progress

Incorrectly believing no progress

Incorrectly believing no progress

➡ Task: Create regex to match + or digits but no ++

➡ Participant sees candidate regex that rejects ++ but accepts letters

➡ Participant rejects candidate

➡ … But just needed to slightly refine output

Incorrectly believing no progress

➡ Task: Create regex to match + or digits but no ++

➡ Participant sees candidate regex that rejects ++ but accepts letters

➡ Participant rejects candidate

➡ … But just needed to slightly refine output

Incorrectly believing no progress

➡ Task: Create regex to match + or digits but no ++

➡ Participant sees candidate regex that rejects ++ but accepts letters

➡ Participant rejects candidate

➡ … But just needed to slightly refine output

Incorrectly believing no progress

➡ Task: Create regex to match + or digits but no ++

➡ Participant sees candidate regex that rejects ++ but accepts letters

➡ Participant rejects candidate

➡ … But just needed to slightly refine output

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

What makes a good specification?

➡ Triggerless tools

○ “It feels like the light bulb pops up randomly.”

➡ Example-based specifications

○ “Am I missing any cases? I feel like I covered all of the edge cases.

Do I need to add a different example for every letter?”

➡ Lack of feedback upon failure

○ “Is there a way to check why it failed?”

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good specification?

Results

Tool characteristics User misconceptions

More in the paper!

Voluntary Specification Incidental Specification

User-Triggered Initiation Triggerless Initiation

User-Triggered
Result Communication

Triggerless
Result Communication

Incorrectly believing the
synthesizer made progress

Incorrectly believing the
synthesizer did not make progress

What makes a good
specification?

Thanks to: Sarah and Dhanya, our anonymous participants, and you!

Exploring the Learnability of Program Synthesizers by Novice Programmers

